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Biophysical Chemistry – CH 4403 01 
Assignment 4 

 
Due Friday, September 26 at 4:30 pm 

 
Please complete the answers to this assignment on a separate page (or pages), showing your work 
and sources (if you referred elsewhere for constants, enthalpies, etc.). 
 
1. In the last assignment, we discussed protein folding.  Recall that this reaction can be 

represented by:   
  ܰ → ܷ (at T1) 
 
 Where N is the native state, and U is the unfolded state.  In class, we determined that if  

ഥ଴ሺܪ∆ ଵܶሻ and ∆ܵ̅଴ሺ ଵܶሻ are known, an approximation for the Gibbs energy at a different 
temperature T2 is  

  
଴ሺܩ̅∆   ଶܶሻ ൌ ഥ଴ሺܪ∆ ଵܶሻ െ ଶܶ∆ܵ̅଴ሺ ଵܶሻ (1) 
 
 Equation (1) assumes that enthalpy and entropy do not change as a function of temperature.  In 

this problem, we will determine the limitations of that approximation. 
 
 (a) If ̅ܥ௉ሺܰሻ and ̅ܥ௉ሺܷሻ are both known and constant over the interval [T2, T1], write an 

expression for the entropy ∆ܵ̅଴ሺ ଶܶሻ in terms of the known parameters of the system. As a 
reminder, the other known parameters are T1, ∆ܵ̅଴ሺ ଵܶሻ, and ∆ܪഥ଴ሺ ଵܶሻ, and we derived an 
expression in class for ∆ܵ̅଴ሺ ଶܶሻ െ ∆ܵ̅଴ሺ ଵܶሻ.  In your final result, you should express the 
difference in heat capacities as ∆̅ܥ௉ ൌ ௉ሺܷሻܥ̅ െ  ௉ሺܰሻ. (3 points)ܥ̅

 
 (b) Write an analogous expression to part (a) for the enthalpy ∆ܪഥ଴ሺ ଶܶሻ. (3 points) 
 
 (c) Using your answers for (a) and (b), write an expression for ∆̅ܩ଴ሺ ଶܶሻ.    It is always true that 
 

଴ሺܩ̅∆ ଶܶሻ ൌ ഥ଴ሺܪ∆ ଶܶሻ െ ଶܶ∆ܵ̅଴ሺ ଶܶሻ 
 
  Thus, your answer for part (c) involves taking your answers from parts (a) and (b) and 

simplifying some algebra.  Your expression should be in terms of the known enthalpy and 
entropy change (at T1), the change in heat capacities ∆̅ܥ௉, the starting temperature T1, and 
the ending temperature T2.  How does your expression differ from eq. 1 above? (3 points) 

 
 (d)  A protein unfolding at 298 K has typical values of 168 kcal mol-1 for H 0 , 0.55  

kcal mol-1 K-1
 for S 0 and a C P  of 5.0 kcal mol-1 K-1.  Using your favorite plotting 

software (Excel is also fine), plot the expression for ∆̅ܩ଴ሺ ଶܶሻ you developed in part (c) vs. 
temperature from 200 K to 400 K (at increments of 5 K).  On the same graph, plot the 
simplified expression from above (eq. 1).  (3 points) 

 
 (e) Is equation 1 always accurate?  Explain in plain English why or why not.  (3 points) 
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2. We will not discuss the Helmholtz energy (A) very deeply in this class, but it is a state function 
like enthalpy and Gibbs energy.  It is defined as ܣ ≡ ܧ െ ܶܵ.  It be shown that, when only pV 
work is done, the following expression applies for a change in the Helmholtz energy:  

 
ܣ݀ ൌ െܵ݀ܶ െ ܸܲ݀ 

 
a. Based on our discussion of multidimensional calculus, write equations for S and P in terms 

of partial derivatives of A. (3 points) 
 

b. Given that this equation is analogous to ݀ܩ ൌ ܸ݀ܲ െ ܵ݀ܶ, under what conditions is Δܣ 
equal to the non-PV work that can be done by the system? (2 points) 

 
3. Carbon can exist in several allotropes, two of which are graphite and diamond.  One way to 

represent the different states of matter is a phase diagram.  The phase diagram displays the 
most stable phases of matter as a function of pressure and temperature.  The phase diagram for 
carbon is shown below (adapted from Bundy, et al. (1996) Carbon. 34(2): 141). 

 

 
 
 The solid lines on this graph represent the boundaries between phases (or allotropes in this 

case).  At lower temperatures and pressures, carbon is most stable as graphite.  Above 5000 K, 
carbon is most stable as a liquid.  Each solid back line represents the boundary between the 
two phases where Δ̅ܩ଴ ൌ 0. 

 
 In example 3.9, your book caculates the location of one point along the line representing the 

graphite-diamond boundary.  For 298 K, the book shows that Δ̅ܩ଴ ൌ 0 when the pressure is 
1.5 ൈ 10ସ bar, or 1.5 GPa (since 1 bar is 100,000 Pa).  This point is indicated by the red arrow 
above. 

 
 In this problem, we will calculate the location of a second point on the phase diagram above.  

We will do this by calculating Δ̅ܩ଴ along two paths: a constant pressure path (1 bar) where we 
increase the temperature to 1000 K, and a constant temperature path where we increase the 
pressure to the phase boundary.   
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 The properties of diamond and graphite that we will need are given in the table below: 
 

Property at 298K, 1 bar Graphite Diamond 
Δܪഥ଴ (kJ mol-1) 0 1.90 
ܵ̅଴ (J mol-1 K-1) 5.74 2.38 
Δ̅ܩ଴ (kJ mol-1) 0 2.90 
 ௣ (J mol-1 K-1) 6.12 8.53ܥ̅
Density (ߩ, gm cm-3) 2.26 3.54 
തܸ  (m3 mol-1) 5.31 ൈ 10ି଺ 3.39 ൈ 10ି଺ 

 
a. Using equation 1, calculate the Δ̅ܩ଴ for the transition from graphite to diamond at 1000 K 

holding pressure constant at 1 bar.  For 4 points of extra credit, you can repeat the 
calculations using your equations from question 1(c). Be sure to state all assumptions 
you’ve made. (3 points + 4 extra credit points) 
 

b. Now, holding temperature constant at 1000 K, find the pressure at which graphite will 
spontaneously convert to diamond.  Make sure your work makes sense according to the 
discussion above.  (4 points) 
 

c. You will find that your answer differs slightly from the value presented in the phase 
diagram; it is lower than the real pressure.  Why? (1 point) 
 

We will not discuss phase diagrams in detail in this class, although in a traditional thermodynamics 
class they are very important.  The goal of this problem is to show you how you can calculate 
physical properties from the thermodynamic data we have been discussing.  Conversely, if you 
know the phase diagram, you can back-calculate properties like the difference in density, heat 
capacity, etc. 
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4. Throughout the class, we’ve assumed that heat capacity is constant as a function of 
temperature, and this has allowed us to simplify many integrals.  In practice, this assumption 
does not hold, especially over large temperature differences.  In this problem, we will examine 
the behavior of a real material.  We will consider the entropy change versus temperature when 
pressure is constant: 

 

ܵ̅ሺ ଵܶሻ െ ܵ̅ሺ ଶܶሻ ൌ න
௣ሺܶሻܥ̅

ܶ
݀ܶ

మ்

భ்

ൎ ௣ܥ̅ ln
ଶܶ

ଵܶ
 

  
 In the expression above, the approximation on the far right assumes that heat capacity is 

constant, whereas the integral expression makes no such assumption. The ̅ܥ௉ vs. ܶ curve for 
solid copper is given below, along with third-order polynomial approximation to the 
experimental data. 

 

 
 

a. The heat capacity at 150 K is 20.50 J mol-1 K-1.  Assuming that the heat capacity is constant 
at this value, calculate Δܵ̅ as the temperature is raised from 100 K to 200 K. (4 points) 
 

b. Using the polynomial approximation calculate the Δܵ̅ over the same temperature range 
taking into account the temperature dependence of ̅ܥ௉.  Compare your answer with part (a).  
This is one of the few questions in this class where you will have to perform an integral.  
(6 points) 
 

c. Looking at the curve, do you think the approximation in part (a) would become better or 
worse at higher temperatures? Why? (3 points) 

 
5. Consider the oxidation of CH4(g) with O2(g) to form CO2(g) and H2O(l).   
 

a. Calculate Δܪഥ଴, Δܵ̅଴, and Δ̅ܩ଴ for this reaction at 298 K and 1 bar. (4 points)  
 

b. Assuming that all gaseous species are ideal gasses, calculate Δ̅ܩ଴ of the reaction above at 
298 K and 0.5 bar.  Is the reaction spontaneous? (3 points) 


