Experiment: Water in a Blender

- Fill blender with water
- Measure initial temperature
- Blend on high for 5 min.
- Measure temperature again
- Temperature increases: why?

Energy Conversion Examples

Potential energy storage in a spring

Electrical current generating heat in your computer

Breaking and re-forming chemical bonds

Why Talk About Molecules?

- "If it's good enough for Lord Kelvin, it's good enough for me."
- Kinetic theory in its infancy (Brownian motion, c. 1830)
- Classical thermodynamics doesn't rely on a molecular framework

William Thomson, 1824-1907

J. Willard Gibbs, 1839-1903

Why Talk About Molecules?

- Molecular reasoning makes thermodynamics more intuitive
- Understanding protein and DNA structure is very useful
- Thermodynamics guides our understanding of molecular interactions

William Thomson, 1824-1907

J. Willard Gibbs, 1839-1903

Systems and Surroundings

• **System:** The part of the universe we're interested in

 Surroundings: Everything else (generally "local" surroundings, e.g. the lab vs. Jupiter)

Boundary: Geometric surface between system and surroundings

Systems and Surroundings

 Isolated System: A system with no mass or energy exchange with surroundings

Closed System: No exchange of mass, but heat exchange possible

Open System: Both heat and mass can exchange

Work Example #1

A piston lifts a 10.0 kg mass from the ground to a height of 10.0 m off the ground. How much work does it do?

Work Example #2

A gas with a pressure P is stored in a cylinder. The top of the cylinder is airtight but can expand against an external pressure P_{ex} . Derive an expression for the work if the gas expands from a volume of V_1 to V_2 .

What is the work if P_{ex} is zero?

Properties of the Heat Capacity

- How easy is it to change an object's temperature?
- Orange curve has highest heat capacity: large change in heat small change in T
- High C is like a buffer, resisting changes in T as q is added

Heat Capacity and Calculus

If we know q(T):

$$C(T) = \lim_{h \to 0} \frac{q(T+h) - q(T)}{h}$$

- C is usually roughly constant for most materials over most temperature ranges
- Integration is possible to determine dq from dT.

$$C = \frac{dq}{dT} \to \Delta q = \int_{T_1}^{T_2} C \, dT$$

Question

(discuss at your table)

At 25 °C, which has a higher heat capacity, 100.0 g of water or 500.0 g of water?

Question

(discuss at your table)

At 25 °C, which has a higher heat capacity, 100.0 g of water or 500.0 g of water?

- Normally, C scales with size of system, but C per unit mass (or moles) does not:
 - $-\overline{C}_V$, \overline{C}_P : Molar heat capacity (J mol⁻¹ K⁻¹)
 - $-C_V^*$, C_P^* : Specific heat capacity (J mol⁻¹ kg)

Intensive vs. Extensive Properties

• **Extensive:** Properties that depend on the system size (they *extend* as the system gets bigger). E.g. Volume, Heat Capacity.

• Intensive: Properties that do not scale with the size of the system (they are *independent* of system size). E.g. Pressure, Molar Heat Capacity.

Heat Capacity and Materials

- C depends on conditions:
 i.e. whether volume of
 system is constant (C_v) or
 pressure is constant (C_P)
- Volume and pressure changes are small for liquids and solids, so C_P ≈ C_V. For a gas, C_P ≠ C_V
- Values given for 1 mol of water

 $C_p = 38.09 \text{ J/K}$ $C_V = 38.08 \text{ J/K}$

 $C_P = 75.33 \text{ J/K}$ $C_V = 74.53 \text{ J/K}$

 $C_P = 37.47 \text{ J/K}$ $C_V = 28.03 \text{ J/K}$ 1

The First Law

- Assume a system has an <u>internal energy</u> (E), representing all energies of atoms, bonds, etc.
- Then, any change in E can be calculated as:

Work done by or to system
$$\Delta E_{SyS} = \Delta q + \Delta w$$
 Heat added to or lost by system

 Note equivalence of heat and work: They can both change E in the same way

The First Law: Consequences

Since energy is conserved:

$$\Delta E_{sys} + \Delta E_{surroundings} = 0$$

- Work and heat are <u>not</u> conserved
 - Calculating real-world changes in heat/work of system/surroundings is not often trivial
- Isolated system: $\Delta E = 0$

What About Internal Energy?

• It is an (extensive) property of the system:

$$E = E(V, T, N_1, N_2, ...)$$

• ONLY THE AMOUNT OF HEAT AND WORK MATTERS, NOT HOW IT IS GENERATED!!!!

 Thus, the change in E depends only on the initial and final conditions, not the process, reversibility, etc. (This is really important!)