The Second Law

 The <u>entropy change</u> for a system is the change in heat absorbed during a reversible process divided by the temperature of that change.

$$\Delta S = \int \frac{dq_{rev}}{T}$$

• Formally, the <u>second law of thermodynamics</u> states that for any change the total entropy change is greater than or equal to zero:

$$\Delta S_{tot} = \Delta S_{sys} + \Delta S_{surr} \ge 0$$
, or $\Delta S_{tot} \ge \int \frac{aq}{T}$

The Second Law

Alternative statements:

$$\Delta S_{sys} \ge \int \frac{dq_{irrev}}{T}$$

"Heat cannot be spontaneously transferred from a cold object to a hot object."

"Entropy must increase or remain constant in an isolated system."

"You can't create a perpetual motion machine."

Standard State Entropies

 Same idea as enthalpies: define a standard state and operate relative to that

$$\Delta S^0 = S_{obs} - S_{ref}$$

• Any property of ΔS is a property of ΔS^0 (or $\Delta \bar{S}^0$):

$$\Delta S^{0}(T_{2}) - \Delta S^{0}(T_{1}) = C_{P} \ln \left(\frac{T_{2}}{T_{1}}\right)$$

 Reference state for entropy is S at 0 K (more on that later)

Summary: Entropy Changes

Temperature (also true for C_V at const. V)

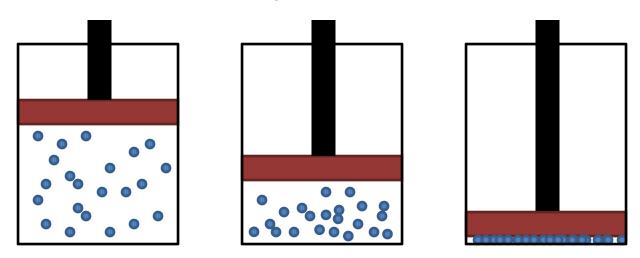
$$S(T_2) - S(T_1) = C_P \ln \left(\frac{T_2}{T_1}\right)$$

Phase Change

$$\Delta S_{tr}(T_{tr}) = \frac{\Delta H_{tr}(T_{tr})}{T_{tr}}$$

- Pressure Change
 - Approximately zero for solids, liquids
 - Ideal gasses at constant T: $\Delta S = -nR \ln \left(\frac{P_2}{P_1}\right) = nR \ln \left(\frac{V_2}{V_1}\right)$

Molecular Interpretation of Entropy



Many configurations for gas molecules

Fewer configurations for gas molecules

 Entropy is a measure of the number of microscopic configurations a system can have while maintaining the same macroscopic properties (volume, temp., density, etc.)

Predicting Entropic Changes

 Using concept of disorder, we can often predict sign of entropy

$$2H_2O(g) \rightarrow 2H_2(g) + O_2(g)$$

 $\Delta S^0 = 89 \text{ kJ mol}^{-1} \text{ K}^{-1}$

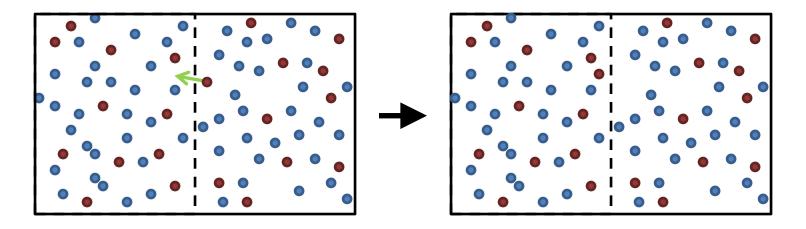
 Hard to predict total changes in aqueous solution (system + surroundings) because water can become ordered or disordered

$$NH_4^+(aq) \rightarrow H^+(aq) + NH_3(aq)$$

 $\Delta \bar{S}^0 = -2 \text{ kJ mol}^{-1} \text{ K}^{-1}$

Is the Second Law Always True?

 Consider a microscopic fluctuation, caused by random (Brownian) motion:



The red molecules are no longer evenly distributed

Introduction: Gibbs Energy

 Recall: Any combination of state variables is also a state variable

$$G \equiv H - TS = E + PV - TS$$

Any change in G can be represented as before:

$$\Delta G = \Delta H - \Delta (TS)$$

 Additionally, let's no longer assume only P, V work:

$$dw = -P_{ex}\Delta V + dw_{rev}^*$$

Implications: ΔG at const. T, P

- In a chemical reaction, some work is required to change volume a small amount
 - This is not useful work to a chemist
- ΔG is the (useful) work done by the system for a given process
 - The inverse, -ΔG is the maximum amount of useful work the system can do on the surroundings
 - Irreversible work is not as efficient

Implications: ΔG at const. T, P

- If $\Delta G = 0$ for a process:
 - System can do no (non-PV) work on surroundings
 - Equilibrium state
- If $\Delta G > 0$ for a process:
 - Work done by surroundings is negative; work is required to complete process
 - Process it not spontaneous (it needs work)
- If $\Delta G < 0$ for a process:
 - Work done on surroundings is positive $(-dw_{rev}^* > 0)$
 - Process occurs spontaneously (no work needed)

Implications: ΔG at const. T, P

• If we know ΔH and ΔS for any process at constant T, P (or ΔH^0 and ΔS^0)

$$\Delta G = \Delta H - T \Delta S$$
 and
$$\Delta G^0 = \Delta H^0 - T \Delta S^0$$

Follows directly from the definition of G