Metabolism: Glucokinase

- Physiological ΔG is -27 kJ mol$^{-1}$
How Does Equilibrium Change?

• Under physiological conditions, reaction is favorable – what about other conditions?

• We already know how to calculate changes in temperature, pressure:
 \[dG = VdP - SdT \]

• What if we change the concentration of ATP?
Functions in Real Life

• **Think:** How do we use functions to characterize real-life experience?

• If we had a “Gibbs function,” we could calculate G at one set of concentrations, and then at another: $\Delta G = G(N_{\text{ATP,2}}) - G(N_{\text{ATP,1}})$
First Step: Le Chatelier’s Principle

• Le Chatelier’s Principle (c. 1900):
 – Start at equilibrium
 – Change conditions (add ATP, change T, etc.)
 – Equilibrium will shift to counteract the change

• What does this mean?
 – Add ATP will favor the reaction which hydrolyzes ATP
 – Increase temperature will favor endothermic reaction (heat is a reaction product)
 – Increase pressure will favor product with smaller V
First Step: Le Chatelier’s Principle

- Le Chatelier’s Principle (c. 1900):
 - Start at equilibrium
 - Change conditions (add ATP, change T, etc.)
 - Equilibrium will shift to counteract the change

- What does this mean?
 - Add ATP will favor the reaction which hydrolyzes ATP
 - Increase temperature will favor endothermic reaction (heat is a reaction product)
 - Increase pressure will favor product with smaller V

Can we make this mathematically rigorous?
The “Gibbs” Function

• Consider a function that gives us the Gibbs energy:
 \[G(P, T, N_{ATP}, N_G, N_{G6P}) \]

• Consider the differential:
 \[
 dG = V\,dP - S\,dT + \left(\frac{\partial G}{\partial N_{ATP}} \right)_{P,T,N_G,N_{G6P}} dN_{ATP} + \left(\frac{\partial G}{\partial N_G} \right)_{P,T,N_{ATP},N_{G6P}} dN_G
 \]

 \[
 + \left(\frac{\partial G}{\partial N_{G6P}} \right)_{P,T,N_{ATP},N_G} dN_{G6P}
 \]

• Or more simply:
 \[
 dG = V\,dP - S\,dT + \left(\frac{\partial G}{\partial N_{ATP}} \right) dN_{ATP} + \left(\frac{\partial G}{\partial N_G} \right) dN_G + \left(\frac{\partial G}{\partial N_{G6P}} \right) dN_{G6P}
 \]
Chemical Potential

• Define the chemical potential μ_x:

$$
\mu_x = \left(\frac{\partial G}{\partial N_x} \right)_{\text{others const.}}
$$

• Then our differential becomes:

$$
dG = VdP - SdT + \mu_{\text{ATP}} dN_{\text{ATP}} + \mu_{\text{G}} dN_{\text{G}} + \mu_{\text{G6P}} dN_{\text{G6P}}
$$

• The red terms must tell us something about the non-PV work (dw^*)
Chemical Potential: Properties

• It’s a derivative: at a minimum, \(\frac{\partial G}{\partial N} = 0 \)

• They are inter-related: At equilibrium (dG = 0), a small increase in ATP (dN_{ATP}) must affect other dN’s

• It’s path-independent: because it’s derived from variables of state

• It’s intensive: Change in free energy per mole of X
Chemical Potential: Properties

• **Pure Substance**: At constant T, P, the μ for a pure substance is simple:

\[
dG = \mu_n dn_a
\]

\[
\frac{dG}{dn_a} = \mu_n
\]

— Therefore: μ is simply the partial molar Gibbs energy ($\Delta \tilde{G}$) for a pure substance
At Equilibrium: Open System

\[aA + bB \rightarrow cC \]

- What is the Gibbs Energy exact differential?
“Open System” Implications

• **Implication #1:** Gibbs energy (at constant T, P) is simply the sum of chemical potentials of components

\[G = \mu_a n_a + \mu_b n_b + \mu_c n_c + \cdots \]

• This is simply conservation of E (the first law) showing up again: **it applies to closed systems, too!**
“Open System” Implications

• **Implication #2:** If we’re interested in \(\Delta G \) (we are), adding a constant to \(\mu \) doesn’t matter:

\[
\begin{align*}
G_2 &= (\mu_{a,2})n_a \\
-G_1 &= (\mu_{a,1})n_a \\
\Delta G &= (\Delta \mu_a)n_a
\end{align*}
\]

\[
\begin{align*}
G_2 &= (\mu_{a,2} - \mu_a^0)n_a \\
-G_1 &= (\mu_{a,1} - \mu_a^0)n_a \\
\Delta G &= (\Delta \mu_a)n_a
\end{align*}
\]

• We can define a “standard state” chemical potential
Far From Equilibrium: Closed System

\[aA + bB \rightarrow cC \]

- What is the Gibbs Energy exact differential?
 \[dG = -SdT + VdP + \mu_a dn_a + \mu_b dn_b + \mu_c dn_c \]

- At constant T, P:
 \[dG = \mu_a dn_a + \mu_b dn_b + \mu_c dn_c \]

- Up to this point, this is has simply been applied math. What does the chemistry say?
What is this $d\alpha$?

\[\frac{dn_a}{a} = \frac{dn_b}{b} = -\frac{dn_c}{c} = -d\alpha \]

- A change per mole of reaction? What?!

- You’ve seen this before:

\[3O_2 + 2 \text{ Gly} \rightarrow 4\text{CO}_2 + 2\text{H}_2\text{O} + 2\text{NH}_3 \]

\[\Delta H = -1160 \text{ kJ mol}^{-1} \]

— Enthalpy per mole of reaction
Approaching Equilibrium: Closed System

\[aA + bB \rightarrow cC \]

• Express \(dG \) in terms of \(d\alpha \) (const. \(T, P \)):
 \[dG = (c\mu_c - a\mu_a - b\mu_b)d\alpha \]

• Generalizing, we have another situation with “products minus reactants” (times moles)

• Closed system does not mean \(n \) cannot change! It does mean that \(n \) must change in a predictable way.
At Equilibrium: Closed System

\[aA + bB \rightarrow cC \]

- At equilibrium, \(dG = d\alpha = 0 \), so therefore:
 \[(c\mu_c - a\mu_a - b\mu_b) = 0 \]

- Additionally, the change in \(G \) per mole of reaction must be
 \[\Delta \bar{G} = \frac{dG}{d\alpha} = (c\mu_c - a\mu_a - b\mu_b) \]

- Generalizing: products minus reactants (times moles)
What Does All This Mean?

• Used mathematical implications to define a new quantity, called the “chemical potential”

• For a pure substance chemical potential is simply molar Gibbs energy

• If we new chemical potentials of reactants and products, we could predict the change in Gibbs Energy (the “available” or “free” energy)