Applications of Chemical Equilibrium

- Van't Hoff Equation (Temperature dependence of K_{eq})
- Calculations of Equilibrium
 - Charge and mass balance
 - Applications to pH: Henderson-Hasselbalch
- Electrochemistry and Free Energy
- Application: DNA Melting

Van't Hoff Equation

• Temperature dependence of ΔG :

$$\frac{\Delta G(T_2)}{T_2} - \frac{\Delta G(T_1)}{T_1} = \Delta H(T_2^{-1} - T_1^{-1})$$

• If this is true for any ΔG , it must be true for $\Delta \bar{G}^0$, too: express $\Delta \bar{G}^0$ in terms of $K_{\rm eq}$

$$\ln \frac{K_2}{K_1} = -\frac{\Delta H}{R} (T_2^{-1} - T_1^{-1})$$

Van't Hoff Equation

• Since
$$K = \frac{[products]}{[reactants]}$$
, bigger K favors products

Solving Equilibrium Problems

Model System: Sodium Acetate Buffer
 HOAc → H⁺ + OAc⁻

Useful constants:

$$K_W = [H^+][OH^-] = 10^{-14}$$
 $K_A = \frac{[H^+][OAc^-]}{[HOAc]} = 1.8 \times 10^{-5}$
(alternatively, pK_A = 4.74)

Solving Equilibrium Problems: Tips

- Write out balanced chemical equation
- Set up table:
 - Initial concentrations
 - Change (conserve mass & charge)
 - Final conditions → expression for K
- Check units and make sure you've answered the question
- If activities are needed (i.e. $a_A \neq [A]$), use them in the equilibrium expression instead of concentrations

Final Example: DNA Hybridization

- DNA "hybridizes" to form pairs of complementary strands
 - A pairs with T (2 H-bonds)
 - G pairs with C (3 H-bonds)
- Given ΔG for short strands, can we predict hybridization free energy for long strands?
- High salt concentrations favor hybridization. Why?

DNA Hybridization

• Simple-minded solution *doesn't* work:

$$\Delta \bar{G} \neq n_{AT} \Delta \bar{G}_{AT} + n_{GC} \Delta \bar{G}_{GC}$$

- Smarter solution: what if we account for initial unfavorable pairing?
 - First ΔG is less favorable because of entropic penalty
 - This still doesn't work, but it's closer

DNA Hybridization: What Works

 Energy requires initiation energy plus a context: what was the previous base pair?

$$\Delta \bar{G} = \Delta \bar{G}_{initiation} + \Delta \bar{G}_{12} + \Delta \bar{G}_{23} + \cdots$$

- Similar expressions exist for $\Delta \bar{S}$, $\Delta \bar{H}$
- DNA hybridization energies are more than hydrogen bond energies!
 - Stacking planar, aromatic groups on top of each other is energetically favorable

DNA Hybridization Example

Consider this simple DNA sequence:

 Sum initiation energy with each combination down the sequence:

$$\Delta \bar{G}^{0} = \Delta \bar{G}^{0}_{init} + \Delta \bar{G}^{0} \begin{pmatrix} C \\ G \\ C \end{pmatrix} \rightarrow \begin{pmatrix} G \\ C \\ G \end{pmatrix} + \Delta \bar{G}^{0} \begin{pmatrix} A \\ C \\ G \end{pmatrix} \rightarrow \begin{pmatrix} C \\ T \\ G \end{pmatrix} + \cdots$$

Coupled Free Energies

Suppose we have two reactions:

$$A+B \rightarrow C$$

 $C \rightarrow D+E$

• Hess's Law: Free energies add

$$\Delta \bar{G} = \Delta \bar{G}_1^0 + RT \ln \frac{[C]}{[A][B]} + \Delta \bar{G}_2^0 + RT \ln \frac{[D][E]}{[C]}$$

- What does this mean about detecting intermediates with ΔG and K alone?
 - Thermodynamics is great, but there are limitations

Probabilities: Moving toward statistical thermodynamics

Protein folding:

• What does $\Delta \bar{G}^0$ tell us about this system at equilibrium?

Folding vs. ΔG^0

$\Delta \overline{\mathrm{G}}^{0}$ (kcal mol ⁻¹)	$\Delta \overline{G}^0$ (kJ mol $^{ ext{-}1}$)	K (at 298 K)	% Folded
15	63	1×10^{-11}	~100
10	42	5×10^{-8}	99.999995
5	21	2×10^{-4}	99.98
0	0	1	50
-5	-21	5×10^{3}	0.02

What does it mean if a protein is 50% folded?