Membrane Proteins

Review of Membrane Proteins

Target of 40% of drugs!
Another Example: Na-K ATPase

- Chemical potential: $\mu \propto RT \ln[Na^+]$
 - Chemical work (hydrolysis of ATP)
 - Coupled reaction: transport of Na$^+$, K$^+$ ions ($\Delta\mu = \mu_{out} - \mu_{in}$)

- What about charge?
 - Ions will move (current)
 - Different # of ions in and out (voltage)

Review: Charges

• Unit of charge: 1 Coulomb (C)
 – Electron (e^-) has charge of
 -1.6022×10^{-19} C
 – Proton (H^+) has charge of
 $+1.6022 \times 10^{-19}$ C

• **Faraday constant**: Charge of a mole of ions
 $F = 9.64853 \times 10^4$ C mol$^{-1}$
Review: Electricity

- **Current (I):** Flow of electrons through a wire (charge per unit time)
 - Unit is Ampere (C s\(^{-1}\))

- **Voltage (V):** Energy stored in an electric field for a given amount of charge (also called potential)
 - Unit is Volt (J C\(^{-1}\))

- **Power (P):** Energy dissipated per unit time \((P = I \cdot V)\)
 - Unit is Watt (J s\(^{-1}\))
Electrochemistry and Galvanic Cells

• Certain chemical reactions result in transfer of electrons from one compound to another (oxidation-reduction)

• **What if:** What if we could couple electron transfer to current going through a wire?

• **We could measure chemical work** (dw^* and ΔG) **by measuring the electrical work!**
 – Doesn’t work for all reactions, even all redox reactions
Electrochemistry and Galvanic Cells

• The system:

\[\text{Zn} \rightarrow 2\text{e}^- + \text{Zn}^{2+} \]

\[\text{Cu}^{2+} + 2\text{e}^- \rightarrow \text{Cu} \]
Non-PV Work in Galvanic Cells

- For a voltage ξ, if n electrons transferred from anode to cathode:
 $$dw^* = -nF\xi$$

- At const T and P, remember:
 $$\Delta\overline{G} = dw^*$$

Convention: Galvanic Cells

\[\text{Zn}(s) \mid \text{ZnSO}_4 (1\text{M}) \parallel \text{CuSO}_4 (1\text{M}) \mid \text{Cu}(s) \]

- **Anode** (where oxidation occurs, net electron loss)
- **Cathode** (where reduction occurs, net electron gain)
- **Phase Boundaries**
- **Salt Bridge**
- **Electrolyte solutions** (with concentrations)
Reaction and Equilibrium

• Overall Reaction is:
 \[\text{Zn}(s) + \text{Cu}^{2+}(aq) \rightarrow \text{Zn}^{2+}(aq) + \text{Cu}(s) \]

• Equilibrium constant (at equilibrium):
 \[K_{eq} = \left(\frac{[\text{Zn}^{2+}][\text{Cu}]}{[\text{Zn}][\text{Cu}^{2+}]} \right)_{eq} \]

• Reaction quotient (not at equilibrium):
 \[Q = \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]} \]
Relating ΔG and \mathcal{E}

- As before, we know (at const T, P):

$$\Delta \tilde{G} = \Delta \tilde{G}^0 + RT \ln Q$$

- Remember previous result:

$$\Delta \tilde{G} = -nF\mathcal{E}$$
Electrochemistry and Galvanic Cells

• Converting our “Gibbs equation” to volts:

\[\varepsilon = \varepsilon^0 - \frac{RT}{nF} \ln Q \]

• Special notes:
 – This is called the “Nernst Equation”
 – F is “Faraday’s number,” or 96,485 C mol\(^{-1}\)
 – \(n\) is the total # of moles of electron per mole of reaction (remember \(d\alpha\) reaction variable)
 – Positive voltage is a spontaneous process
Electrochemistry Example

• Copper/Silver Galvanic Cell:
 \[\text{Ag}^+ + e^- \rightarrow \text{Ag} \quad \varepsilon^0 = 0.799 \text{ V} \]
 \[\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \quad \varepsilon^0 = 0.337 \text{ V} \]

• What is the standard state free energy for a Cu/Ag galvanic cell? Is Ag the cathode or the anode?
Probabilities: Moving toward statistical thermodynamics

• Protein folding:

• What does $\Delta \bar{G}^0$ tell us about this system at equilibrium?
Folding vs. ΔG^0

<table>
<thead>
<tr>
<th>$\Delta \bar{G}^0$ (kcal mol$^{-1}$)</th>
<th>$\Delta \bar{G}^0$ (kJ mol$^{-1}$)</th>
<th>K (at 298 K)</th>
<th>% Folded</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>63</td>
<td>1×10^{-11}</td>
<td>~100</td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>5×10^{-8}</td>
<td>99.9999995</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>2×10^{-4}</td>
<td>99.98</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>-5</td>
<td>-21</td>
<td>5×10^3</td>
<td>0.02</td>
</tr>
</tbody>
</table>

• What does it mean if a protein is 50% folded?