Membrane Proteins

Another Example: Na-K ATPase

- Chemical potential: $\mu \propto RT \ln[\text{Na}^+]$
 - Chemical work (hydrolysis of ATP)
 - Coupled reaction: transport of Na⁺, K⁺ ions ($\Delta \mu = \mu_{out} \mu_{in}$)
- What about charge?
 - Ions will move (current)
 - Different # of ions in and out (voltage)

Source: Wikipedia

Review: Charges

- Unit of charge: 1 Coulomb (C)
 - Electron (e^-) has charge of $-1.6022 \times 10^{-19} \text{ C}$
 - Proton (H $^+$) has charge of +1.6022 x 10 $^{-19}$ C

• Faraday constant: Charge of a mole of ions $F = 9.64853 \times 10^4 \text{ C mol}^{-1}$

Review: Electricity

- Current (I): Flow of electrons through a wire (charge per unit time)
 - Unit is Ampere (C s⁻¹)
- Voltage (V): Energy stored in an electric field for a given amount of charge (also called potential)
 - Unit is Volt (J C⁻¹)
- Power (P): Energy dissipated per unit time ($P = I \cdot V$)
 - Unit is Watt (J s⁻¹)

Electrochemistry and Galvanic Cells

- Certain chemical reactions result in transfer of electrons from one compound to another (oxidation-reduction)
- What if: What if we could couple electron transfer to current going through a wire?
- We could measure chemical work (dw* and ΔG) by measuring the electrical work!
 - Doesn't work for all reactions, even all redox reactions

Electrochemistry and Galvanic Cells

Non-PV Work in Galvanic Cells

• For a voltage ξ , if n electrons transferred from anode to cathode:

$$dw^* = -nF\xi$$

 At const T and P, remember:

$$\Delta \bar{G} = dw^*$$

Convention: Galvanic Cells

Reaction and Equilibrium

Overall Reaction is:

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

Equilibrium constant (at equilibrium):

Pure

Pure

$$K_{eq} = \left(\frac{[Zn^{2+}][Cu]}{[Zn][Cu^{2+}]}\right)_{eq}^{eq}$$

Substance

Reaction quotient (not at equilibrium):

$$Q = \frac{[\mathrm{Zn}^{2+}]}{[\mathrm{Cu}^{2+}]}$$

Relating ΔG and ${\mathcal E}$

As before, we know (at const T, P):

$$\Delta \bar{G} = \Delta \bar{G}^0 + RT \ln Q$$

Remember previous result:

$$\Delta \overline{G} = -nF\mathcal{E}$$

Electrochemistry and Galvanic Cells

Converting our "Gibbs equation" to volts:

$$\mathcal{E} = \mathcal{E}^0 - \frac{RT}{nF} \ln Q$$

- Special notes:
 - This is called the "Nernst Equation"
 - F is "Faraday's number," or 96,485 C mol⁻¹
 - n is the total # of moles of electron per mole of reaction (remember $d\alpha$ reaction variable)
 - Positive voltage is a spontaneous process

Electrochemistry Example

Copper/Silver Galvanic Cell:

$$Ag^{+} + e^{-} \rightarrow Ag$$
 $\mathcal{E}^{0} = 0.799 \text{ V}$
 $Cu^{2+} + 2e^{-} \rightarrow Cu$ $\mathcal{E}^{0} = 0.337 \text{ V}$

 What is the standard state free energy for a Cu/Ag galvanic cell? Is Ag the cathode or the anode?

Probabilities: Moving toward statistical thermodynamics

Protein folding:

• What does $\Delta \bar{G}^0$ tell us about this system at equilibrium?

Folding vs. ΔG^0

$\Delta \overline{G}^0$ (kcal mol ⁻¹)	$\Delta \overline{G}^0$ (kJ mol $^{ ext{-}1}$)	K (at 298 K)	% Folded
15	63	1×10^{-11}	~100
10	42	5×10^{-8}	99.999995
5	21	2×10^{-4}	99.98
0	0	1	50
-5	-21	5×10^{3}	0.02

What does it mean if a protein is 50% folded?