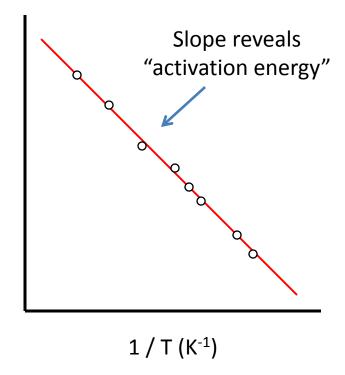
Rate Laws and Temperature

 Suppose we've identified a second-order rate law:

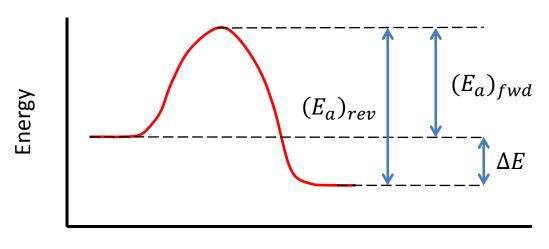
$$v = k[A][B]$$

- What changes when we change T?
 - Does rate change?
 - Do concentrations/activities change?

Arrhenius Equation


In (k / s^{-1})

- Observing rates vs. T
 - Determine k
 - Limited temperature range (~25 °C)
- Result (equivalent):


$$-k = Ae^{-E_a/RT}$$

$$- \ln k = -\left(\frac{E_a}{RT}\right) + \ln A$$

$$-\ln\left(\frac{k_2}{k_1}\right) = -\frac{E_a}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

What is Activation Energy?

Reaction Coordinate

- Reaction coordinate (x-axis): The degree to which a reaction has completed (recall $d\alpha$ from equilibrium)
- Reaction energy (y-axis): The energy state of products vs. reactants

Very High Temperatures

According to Arrhenius Equation:

$$v = A[x_1]^{n_1}[x_2]^{n_2} \dots e^{-\frac{E_a}{RT}}$$

• At high temperatures, $e^{-\frac{E_a}{RT}} \rightarrow 1$, so $v = A[x_1]^{n_1}[x_2]^{n_2} \dots$

 This factor (A) must tell us something about frequency of collisions, collision efficiency, etc. (more later)

Problems with Arrhenius Approach

 Collision rates can be calculated, and do not always correspond to observed value of A

 Some reactions have higher values of A than are theoretically possible

 Collisions don't account for chemical structure and rearrangement

Transition State Theory (A New Hope)

Observations:

- Collisions don't account for molecular structure during a reaction
- Activation energy seems to work well

A New Theory:

- Transition state accounts for structure
- "Energetically activated" complex

Transition State

Simple Reaction:

$$M + N \xrightarrow{k_{obs}} P$$

Written with transition state:

$$M + N \stackrel{K^{\ddagger}}{\rightleftharpoons} [MN]^{\ddagger} \stackrel{k^{\ddagger}}{\rightarrow} P$$

Transition State Example

Transition state reaction:

$$M + N \stackrel{K^{\ddagger}}{\rightleftharpoons} [MN]^{\ddagger} \stackrel{k^{\ddagger}}{\rightarrow} P$$

• SN₂ Reaction (where OH = SCN):

Transition State Concepts

Transition state reaction:

$$M + N \stackrel{K^{\ddagger}}{\rightleftharpoons} [MN]^{\ddagger} \stackrel{k^{\ddagger}}{\rightarrow} P$$

- What is K^{\ddagger} ?
 - Fast equilibrium between M + N and $[MN]^{\ddagger}$
 - Establishes a transition state energy

$$\Delta \bar{G}^{\ddagger} = -RT \ln K^{\ddagger}$$

Transition State Concepts

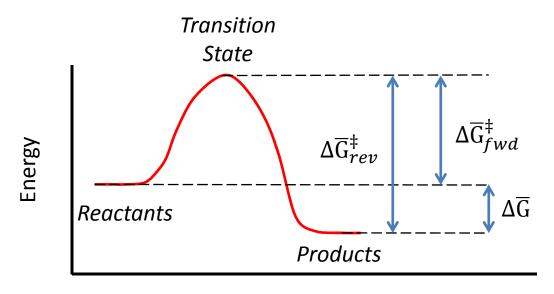
Transition state reaction:

$$M + N \stackrel{K^{\ddagger}}{\rightleftharpoons} [MN]^{\ddagger} \stackrel{k^{\ddagger}}{\rightarrow} P$$

- What is k^{\ddagger} ?
 - *Universal* rate constant: $k^{\ddagger} = \frac{k_B T}{h} = 6.21 \times 10^{12} \text{ s}^{-1}$ (at 298 K)
 - Approximate frequency of one bond vibration

Relating k_{obs} to Transition State Parameters

Simple Reaction:


$$M + N \xrightarrow{k_{obs}} P$$

Written with transition state:

$$M + N \stackrel{K^{\ddagger}}{\rightleftharpoons} [MN]^{\ddagger} \stackrel{k^{\ddagger}}{\rightarrow} P$$

How do we relate these two models?

A Slightly New Paradigm

Reaction Coordinate

• Therefore:

$$k_{obs} = \frac{k_B T}{h} e^{-\frac{\Delta \bar{G}^{\ddagger}}{RT}}$$

Question: Is this reaction at equilibrium?

Enthalpies and Entropies

• We know that:

$$\Delta \bar{G}^{\ddagger} = \Delta \bar{H}^{\ddagger} - T \Delta \bar{S}^{\ddagger}$$

• It must be true that:

$$k = \frac{k_B T}{h} e^{\left(\frac{\Delta \bar{S}^{\ddagger}}{R}\right)} e^{-\left(\frac{\Delta \bar{H}^{\ddagger}}{RT}\right)}$$

Hold it! What about Arrhenius?

Temperature Dependence

• Slope of ln *k* vs. 1/T:

$$\frac{\partial \ln k}{\partial (1/T)} = -\frac{(RT + \Delta \overline{H}^{\ddagger})}{R}$$

Compare to Arrhenius:

$$\frac{\partial \ln k}{\partial (1/T)} = -\frac{(E_a)}{R}$$

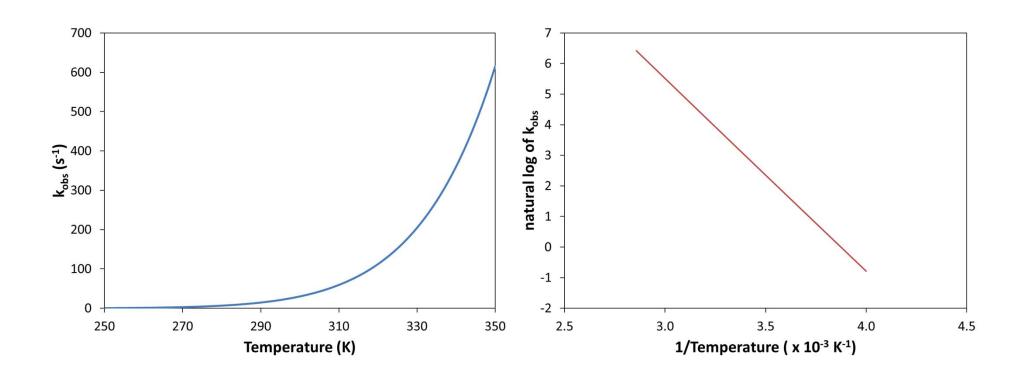
Comparing TS Theory to Arrhenius

• Transition state theory predicts a not-so-linear dependence of $\ln k$ vs. 1/T

$$E_{a,obs} = RT + \Delta \overline{H}^{\dagger}$$

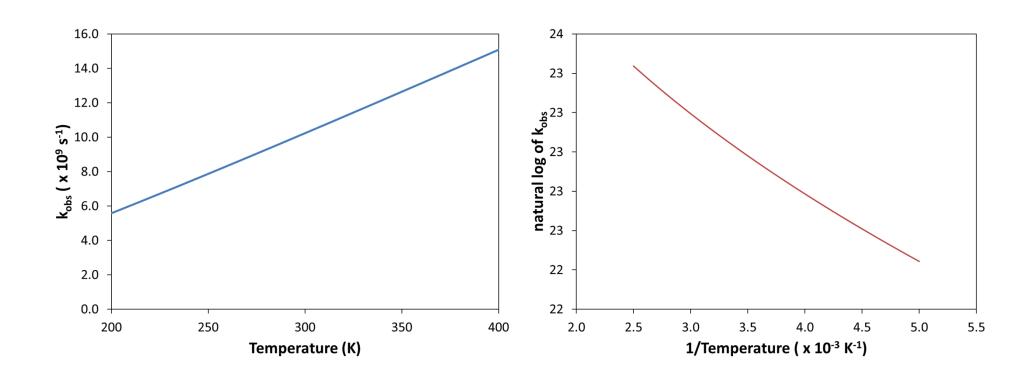
- But: RT doesn't change much from 250 K (2.1 kJ mol⁻¹) to 350 K (2.9 kJ)
 - Deviation from linearity hard to detect
- Also: Typical $\Delta \overline{H}^{\ddagger}$ is ~40 kJ mol⁻¹. Therefore:

$$E_a \approx \Delta \overline{H}^{\ddagger}$$


Comparing TS Theory to Arrhenius

What about the collision term A?

$$\Delta \bar{S}^{\ddagger} \approx R \ln \left(\frac{Ah}{k_B T_{avg}} \right) = R \left(\ln A - \ln \frac{k_B T_{avg}}{h} \right)$$


• A is typically less than $\frac{k_B T_{avg}}{h}$, so entropies are usually negative

But Is It Linear?

$$\Delta \overline{H}^{\ddagger} = 50 \text{ kJ mol}^{-1} \text{ and } \Delta \overline{S}^{\ddagger} = -50 \text{ J mol}^{-1} \text{ K}^{-1}$$

But Is It Linear?

$$\Delta \overline{H}^{\ddagger} = 0.1 \text{ kJ mol}^{-1} \text{ and } \Delta \overline{S}^{\ddagger} = 50 \text{ J mol}^{-1} \text{ K}^{-1}$$

Problems With Transition States

- What about complex reactions?
 - What's the transition state in binding?
 - What's the transition state in folding?

Challenges of interpreting entropy and enthalpy