Single Molecule Kinetics

Consider radioactive decay:

$$^{32}_{15}P \rightarrow ^{32}_{16}S^{+1} + e^- + \bar{\nu}_e$$

- Questions:
 - How does one phosphorus molecule know when to decay?
 - Do molecules have watches?

What Does k Mean?

 One view: Rate at which radioactive molecules decay (N molecules per second)

 Valid Alternative: Probability that one molecule will decay per unit time (N transitions per second)

Algorithmic Thinking

- Consider: Ensemble of N radioactive 32 P atoms, rate constant k.
- In period Δt , the likelihood of decay for one atom is:

$$\left(k\frac{\text{transitions}}{\text{s}}\right)\left(\Delta t \frac{\text{s}}{\text{period}}\right) = k\Delta t \frac{\text{transitions}}{\text{period}}$$

- For each of N molecules, generate a random number r between 0 and 1:
 - If $0 \le r < k\Delta t$, decay to $^{32}S^+ + e^-$
 - Otherwise, don't decay this period

Simulation Results

- Rate constant is 0.06 s⁻¹, time step is 1 s.
- Red line is $e^{-0.06t}$.

The Master Equation

- Paradigm Shift: Instead of a single rate law, imagine a set of transition probabilities from one state (³²P) to another (³²S)
 - Works for more complicated systems, too
- The <u>master equation</u> allows us to integrate probabilities and determine population change over time
- Well beyond the scope of this course!

Example: Cholesterol Oxidase

Mechanism:

$$E \cdot FAD + S \overset{k_1}{\rightleftharpoons} (E \cdot FAD) \cdot S \overset{k_2}{\rightarrow} E \cdot FADH_2 + P$$

Fluorescent

Not Fluorescent

Example: Cholesterol Oxidase

 Trap enzymes in a rigid matrix, observe individual molecules in a fluorescence microscope

 Measure lifetimes of hundreds of cholesterol oxidase molecules

 Form a histogram: how many molecules had a lifetime of x ms?

Single Molecule Kinetics: Takeaways

- Individual molecules have a distribution of lifetimes
- Average behavior closely follows Michaelis-Menten kinetics
- New insight: If step 1 is slow, is step 2 also slow?
 <u>Single molecule dynamics!</u>

Final Exam Details

- Tuesday, Dec. 9 from 12:00 3:00 pm
 - Location is in our usual classroom
- Total of 200 points (20% of your grade):

Topic	Book Chapters	Weeks	Points
Protein/DNA Structure and Thermodynamics	1-3, <i>MoL</i> Chapter 1	1-4	55
Equilibrium, Binding, and Statistical Mechanics	4, 5, 7, and pp. 206-213	5-9	55
Chemical Kinetics	9	10-13	60
Enzyme Kinetics, Protein Folding,	10	15-16	30