
Page 1 

Methods in Biophysical Chemistry – CH 8613 01 

Programming Assignment 

 

Due Monday, November 28 
 

Introduction and Goals 

 

 It is virtually impossible to be a successful scientist today without some understanding of 

computer programming.  Modern instrumentation relies on computation to process and store large 

datasets, and frequently it is necessary to use programming as a means of examining the data in 

novel ways.  This is especially true in the field of protein science because of how protein 

coordinates are stored.  Complex molecular structures require proportionately complex methods 

for data analysis, and even those who aren’t involved in molecular simulation must have some 

practical understanding of how to manipulate structural data. In this assignment, you will be asked 

to solve a simple problem in protein structure analysis by writing a computer program in any 

language you choose. 

 

 If you already know a programming language, you should strongly consider using that 

language to complete the assignment.  Your instructor can assist you in any number of 

programming languages, including C, C++, FORTRAN, Python, and Perl.  If you don’t already 

know a programming language, this assignment will force you to learn one.  It does not matter 

which programming language you use, but Python is strongly recommended if you have not 

programmed before.  It is straightforward and easy to use while being very powerful.  It is also 

popular and looks good on your CV. 

 

Another goal of this assignment is to force you to understand how structural data is stored 

in the PDB, as well as how to access that data.  PDB files contain all the information needed to 

reconstruct the structure of a protein or nucleic acid: there are atom names, residue names, residue 

numbers, and the X, Y, Z positions for each atom.  With the exception of some “header” 

information, PDB files are simply a list of this information, which each line corresponding to a 

separate atom.  Your program will have to make sense of this file and perform some useful 

computation on the coordinates. 

 

Although not explicitly required, a final goal of this assignment is familiarize you with the 

UNIX operating system environment.  The Python interpreter is available as a download for PCs, 

and all Macs already have Python installed in their UNIX back-end, but as a student of this class, 

you will be given access to my Linux server so you can write your program there if desired.  If 

you would like an account, please email me and I will give you the details in class.  You will not 

be required to use my Linux server, but I guarantee that knowing UNIX/Linux will benefit you in 

the future.  Employers like to see UNIX experience on CVs, but it also frequently comes up in 

scientific environments.  A good UNIX tutorial can be found at 

http://www.ee.surrey.ac.uk/Teaching/Unix/. 

 

There is a lot to learn from this assignment, and very little of this material will be taught in 

class.  You will be expected to take several weeks and teach yourself the skills needed to succeed.  

The does not mean you cannot ask for help, but it does mean you will need to pace yourself in 

http://www.ee.surrey.ac.uk/Teaching/Unix/


Page 2 

your learning. Therefore, if you do not have programming background or experience with 

UNIX, I recommend you start this assignment right now.  Even though you have more several 

months to complete this assignment, that time will pass quickly.  Your instructor is happy to offer 

help and advice, but waiting until Thanksgiving will probably be too late to learn everything 

needed for this assignment. 

 

The Project 

 

 The project is (conceptually) simple: You are to write a program that computes a contact 

plot for a given PDB file.  These plots are discussed in section 1.5 of your textbook (van Holde).  

The protein you will use is Staphylococcal nuclease (Snase), and you will examine two PDB files 

for this protein: PDB ID 2SNS and 1SNC.   

 

The input of your program will be the PDB file itself.  At the command line, you will 

specify the name of the PDB file that you wish to run.  For example, if my program is called 

contact.py and I wanted to run my program on the 1SNC.pdb file, I would run: 

 
% python contact.py 1SNC.pdb 

 

Your program must take as input the text file that you download from the PDB (http://rcsb.org/).  

There is a lot of extra stuff in this file; your program must filter it out.  Submissions that require 

modified or “pre-processed” inputs will not receive full credit. 

 

The output of your program will be a series of coordinates, x and y, stored in a file called 

“contact.txt” In this output, x and y correspond to residue numbers.  If x and y appear in the 

list of output, it means that the Cα atoms are less than 6.0 Å apart.  Consider the following example 

output: 

 
1 1 

1 2 

1 3 

2 1 

2 2 

3 1 

3 3 

 

The interpretation of this output is that residue 1 Cα is within 6.0 Å from residue 1 Cα (this is 

always the case, because a residue is always close to itself).  Additionally, residue 1 is close to 

residue 2 and 3.  Note that residue 2 is not close to residue 3.  There is no “2  3” nor “3  2” 

pair.  Thus, what’s left out of your output is just as important as what is included. 

  

The astute reader will note that these coordinates can be used to create a 2D graph.  As 

long as the points are not connected by lines, and as long as the symbols are big enough, you can 

plot the results of output.txt in a software package like Excel, and the result will be a true 

contact plot.  To submit your assignment, you will include both your code and a printout of your 

contact plots (clearly and neatly labeled) for 2SNS and 1SNC. 

http://rcsb.org/


Page 3 

 

Students wishing to submit their plots in Grace AGR format will receive an additional 10% 

bonus.  This accomplishment demonstrates mastery of UNIX as well as programming.  To run 

Grace at the UNIX prompt, type xmgrace. 

 

 As you think about your code, you will need to consider a structured approach to solving 

the problem.  The following points may be helpful: 

 

1. An approach to solving the problem would be to scan through the PDB file and collect the 

coordinates of the necessary Cα atoms as you go along.  Cα atoms are named “CA” in the PDB 

file itself; since you are only interested in Cα-Cα distances, you can ignore all other atoms. 

 

2. If you have two atoms, each with x, y, and z coordinates in space, then the distance between 

those atoms is given by: 

𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2 

 

3. You will need to keep some memory of which residues have which coordinates.  In many 

programming languages, this is done by creating an array.  Creating an array of x, y, and z 

coordinates, where the index is the residue number. 

 

4. Once you have an array of coordinates, you can create a double loop that compares distances 

for every combination of residues i and j.  Then, print out those combinations where the 

distance between i and j is less than 6 Å. 

 

5. PDB files have a standard text format, the definition for which can be found at 

http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html.  You are most 

interested in the ATOM records, and you can safely ignore the other lines for this project.   

 

Programming Language 

 

You are welcome to use any programming language you like.  As mentioned above, 

however, I would recommend Python if you haven’t programmed before.  The following websites 

offer some resources for learning this extremely powerful language. 

 

 How to Think Like a Computer Scientist is a free, on-line book that covers the basics of 

Python.  It covers Python from a programming point of view: rather than starting with 

syntax, it starts with the “big picture” and shows you how Python applies.  It’s available at 

http://openbookproject.net/thinkcs/python/english3e/.  

 A very good Python tutorial can be found at https://docs.python.org/3/tutorial/.   

 Learning Python by Mark Lutz is an extremely good book on the subject.  This is the book 

that I started with (back in 2001), although several editions have been published since then.  

It’s not free, but it’s a worthwhile investment. 

 The Python module index (https://docs.python.org/3/py-modindex.html) contains a listing 

of all the modules (libraries) available in the default distribution, including the math library.  

It’s more for advanced users, but it is extremely useful. 

 

http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
http://openbookproject.net/thinkcs/python/english3e/
https://docs.python.org/3/tutorial/
https://docs.python.org/3/py-modindex.html


Page 4 

What to Submit 

 

When you have finished your program, submit the following, either digitally or in printed form, 

by the beginning of class on the due date given above: 

 

1. A complete copy of your code (sent digitally). 

 

2. Your contact plots for 2SNS and 1SNC (printed or digital copies are fine).  I don’t need the 

Excel files.  Make sure your name is on your submission and that you’ve labeled each plot 

clearly.  An example of how your plot should look is on the next page. 

 

3. Your agr data files (if you used Grace to create your graph).  This should be sent digitally. 

 

Requirements 

 

Below is listed a summary of the key requirements for this assignment: 

 

1. Your program must take the PDB file as input.  It can either prompt the user for the PDB file, 

or it can take it as a command line argument (demonstrated above). 

 

2. Your program must write the output to a separate file called “contact.txt” and not to the 

screen.  The requirement is to demonstrate that you have mastered file I/O. 

 

3. Your program must calculate the distances between all CA atoms within the protein; these 

distances must be calculated from the atoms within the PDB file and not from a lookup table 

or any other source. 

 

4. You can assume that the PDB file contains no missing atoms, but you cannot assume that the 

PDB file starts at residue number 1.  If you inspect the PDB file for 1SNC, you’ll notice that 

the first residue is number 7.  Your code must account for this numbering offset 

automatically. 

 

5. Your code cannot use any third-party protein/PDB processing libraries. General purpose 

libraries (such as Python’s built-in modules) are fine. 

 

 

  



Page 5 

Example Contact Plot 

 

The following is an example of what your output should look like for the PDB file 2SNS.  This 

graph was created in Excel. 

 

 
 



 

Category Evaluation Criteria 

Max. 

Score 

Student 

Score 

Code Input: PDB Parsing 
 Program can read a PDB file 

 Unnecessary lines are ignored (REMARK, HETATM, etc.) 

 Program prompts for name or takes command line input 

5 

 

Atom Selection 
 Program properly selects atoms for distance calculation 

 Side chain atoms are ignored 

10 
 

Calculation 
 Formula for distance is correct 

 Output is x, y pairs of residue i, residue j 

 Output is written to a separate file (not stdout) 

10 

 

Style 
 Comments denote flow of execution 

 Good use of indentation, spacing, etc. 

 Functions are used to simplify calculation 

3 

 

Plots Plot Correctness 
 Both 2SNS and 1SNC match solution 

15 
 

Plot Format 
 Axes are labeled properly, etc. 

 Range of axes from 0-150 (not 200, 300, etc.) 

7 
 

Grace Plots 
(Extra Credit) 

Plot #1: 2SNS 
 Plot can be opened in Grace 

3 
 

Plot #2: 1SNC 
 Plot can be opened in Grace 

3 
 

Total Score 50  

 

 

 


