Graduate Topics in Biophysical Chemistry – CH 8990 03 Assignment 7

Due Monday, April 28

- 1. Use the ITC worksheet that was emailed to you to design an experiment in the following situations. The goal of this question is to select parameters that will give you a sigmoidal curve if your curve only looks linear, you will not be able to extract parameters from it. Your answer should include (a) which component is in the 125 μ L syringe and which is in the 1.5 mL sample cell, (b) the initial concentrations of each, (c) the size of each injection, and (d) a plot of your simulation assuming a reasonable value for $\Delta \overline{H}^0$. You may assume that all binding sites are identical and independent. (5 points each)
 - a. An exothermic binding reaction, where 2 titrant molecules bind 1 protein molecule. You suspect the K_D is around 30 μ M, and neither the titrant nor the protein is limited in solubility.
 - b. An endothermic binding reaction of 1:4 DNA to ligand. The ligand concentration is limited to 200 μ M, and but there are no limitations to the DNA concentration. You expect the K_D to be close to 1 μ M.
- 2. On the website you will find a set of transformed ITC data. The syringe and sample concentrations are 5 mM and 150 μ M, respectively, and each injection is 5 μ L into a 1.5 mL sample cell. Estimate N, K_D and $\Delta \overline{H}^0$ for this reaction. To solve this problem, you should paste the data into Excel and manually optimize the agreement between the simulated and experimental data. Submit a plot of your fit. If the experiment was performed at 25 °C, what are $\Delta \overline{G}^0$, $\Delta \overline{S}^0$, and $\Delta \overline{H}^0$ for binding? (10 points)
- 3. van Holde, question 2.10. (5 points)
- 4. Using DSC, you measure the calorimetric enthalpy of unfolding of a small folding $(\Delta \overline{H}_{cal}^0)$ to be 95 ± 8 kcal mol⁻¹. The Van't Hoff enthalpy $(\Delta \overline{H}_{VH}^0)$, calculated assuming a two state model, is 73 ± 4 kcal mol⁻¹. What is $\Delta \overline{H}_{VH}^0$, and how could you determine it experimentally? Explain why $\Delta \overline{H}_{VH}^0$ may differ from $\Delta \overline{H}_{cal}^0$. (10 points)

5. Below are a set of DSC curves for a solution of Lysozyme at several pH values:

- a. Explain how the curves above relate to the enthalpy of unfolding for each of these curves. (5 points)
- b. At pH 4.5, you determine $\Delta \overline{H}^0$ to be 140 kcal mol⁻¹. At pH 2.0, you measure a value for $\Delta \overline{H}^0$ of 122 kcal mol⁻¹. Estimate ΔC_p of unfolding for lysozyme. You may assume that the difference in pH makes no contribution to the thermodynamics of unfolding. *Hint:* Take a look at page 11 of Doug Barrick's DSC notes. (5 points)
- 7. Give two reasons why hydrogen atoms are difficult to detect with X-ray diffraction. (5 points)