Calculating DNA Properties

Biochemistry Boot Camp 2022 Session #4 Chris Johnson cn.johnson@chemistry.msstate.edu

Nucleic Acid Extinction Coefficient

DNA Concentrations: Often measured in μ g/mL (or the equivalent ng/ μ L) instead of M, mM, etc. Also sequence isn't exactly known in many cases.

Rule of Thumb: For doublestranded, plasmid DNA, the extinction coefficient at 260 nm is

0.020 (µg/mL)⁻¹ cm⁻¹

DNA vs. Protein Absorbance

DNA Concentrations: At 260 nm, doublestranded DNA has an extinction coefficient of **Protein Concentrations:** At 280 nm, the GB3 protein has an extinction coefficient (in equivalent units) of

 $0.020 (\mu g/mL)^{-1} cm^{-1}$

 $0.0016 (\mu g/mL)^{-1} cm^{-1}$

Which is more sensitive?

What are the implications?

Other Values for Long, Randomized Sequences

• Single-Stranded RNA: 0.025 (μ g/mL)⁻¹ cm⁻¹

• Single-Stranded DNA: 0.030 (µg/mL)⁻¹ cm⁻¹

• For a pure nucleic acid, the 260/280 nm ratio should be approximately 1.8-2.0

Nucleic Acids – Smaller Molecules

OligoAnalyzer

Sequence	5' MOD + INTERNAL+ 3' MOD + MIXED BASES +	Paramete	r sets	ANALYZE
CGA AGA ACA	GGA AGC GGA ATT TAA AGA AG	SpecSheet	(Default)	HAIRPIN
		_		SELF-DIMER
		Target type		HETERO-DIMER
		Oligo Conc	0.25 µM	NCBI BLAST
Bases 29	CLEAR SEQUENCE	Na ⁺ Conc	50 mM	TM MISMATCH
Try the new l	batch mode here	Mg ⁺⁺ Conc	0 mM	ADD TO ORDER
		dNTPs Conc	0 mM	

• IDT DNA Analyzer (extinction coefficient, Tm): https://www.idtdna.com/pages/tools/oligoanalyzer

- Need to log in, create an account (free)

Instructions | Definitions | Feedback

Calculating Reverse Complement

Reverse						
Complement						
Reverse Complement converts a DNA sequence into its reverse, complement, or reverse-complement counterpart. You may want to work with the reverse-complement of a sequence if it contains an ORF on the reverse strand.						
>Sample sequence GGGGaaaaaaaatttatatat						
SUBMIT CLEAR						
Convert the DNA sequence into its	reverse-complement counterpart.					
[home	1					

 Bioinformatics.org Calculator (no-frills): <u>http://bioinformatics.org/sms/rev_comp.html</u>

DNA Translation Tool

• Site:

http://web.expasy.org/translate/

Input: DNA or RNA sequence (5' → 3' orientation)

• **Output:** All six possible translation frames

Other Databases

 NCBI Databases work for DNA sequences, too (reference sequences start with NM_)

 PDB also houses a number of RNA/DNA structures in addition to proteins

Think And Discuss

How can these databases be used to make your lab work easier? What are some practical examples?

DNA "Melting"

 $\Delta \bar{G}^0 = ?$

- Two strands come together:
 - How much work can be done?
 - Which side of the reaction does temperature favor?

Thermal Melts

- Adding heat favors highly random systems,
 DNA will separate at high temperature
 - Secondary and tertiary structure is lost, primary is maintained

• What will affect the melting temperature?

Predicting Melting Temperatures

- To calculate T_m, add 4 °C for each G-C pair, and 2 °C for each A-T
 - Not terribly accurate

- Example: GCCCTGAAGGTCAAGTCCCCC
 - − 14 G-C = 56 °C
 - − 7 A-T = 14 °C
 - Prediction is 70

Predicting Melting Temperatures

• IDT OligoAnalyzer:

https://www.idtdna.com/pages/tools/oligoanalyzer

• **Input:** Your DNA sequence of interest, salt concentration

• **Output:** T_m, extinction coefficient, %GC content

Predicting Secondary Structure

 mfold Web Server: <u>http://mfold.rna.albany.edu/?q=mfold</u>

• Input: RNA/DNA sequence

Example: HIV TAR RNA

 Trans-Activation Response Element – Binds with a protein (Tat) to promote viral transcription

• Sequence:

GGGUCUCUCUGGUUAGACCAGAUCUGAGCCUGGGAGCUCUCU GGCUAACUAGGGAACCCAC

Why is this Useful?

- Site-Directed **Mutagenesis**
- Good Primers:
 - $-T_{m} > 78 \text{ °C} (2 \text{ mM})$ MgCl₂, 50 mM NaCl)
 - GC content > 40%
 - No secondary structure (< 50 bp)
 - End with G or C

The Nobel Prize in Chemistry 1993 Kary B. Mullis, Michael Smith

The Nobel Prize in Chemistry 1993	Ψ.
Nobel Prize Award Ceremony	T
Kary B. Mullis	v
Michael Smith	w.

Kary B. Mullis

Michael Smith

The Nobel Prize in Chemistry 1993 was awarded "for contributions to the developments of methods within DNA-based chemistry" jointly with one half to Kary B. Mullis "for his invention of the polymerase chain reaction (PCR) method" and with one half to Michael Smith "for his fundamental contributions to the establishment of oligonucleotide-based, site-directed mutagenesis and its development for protein studies".

Photos: Copyright © The Nobel Foundation

Polymerase Chain Reaction (PCR)

• Key consideration: Temperature for primer annealing (computational tools)!

https://www.genome.gov/genetics-glossary/Polymerase-Chain-Reaction

Example: Designing Primers

*	Agilent Technologie	s Genomics	S English ▶ United State:	s Contact Us Logout My Account Quick Order 🦙 Cart (0)
Home	Products & Services	Applications	Resources & Support	Search products or part numbers
Quik ? Help The Quikt described	Change Primer E Change® Primer Design Program d in QuikChange manuals, this p	Design n supports mutagenic rogram calculates/des	Overview General primer design for your QuikChange r igns the appropriate primer sequence	Info Links BioCalculators QuikChange Primer Design mutagenesis experiments. Using primer design guidelines es with the optimal melting temperature. Read Help for more
informatio	on about the program. pand Help	:- f f f l d		

1. It is recommended that you clear th	nis form prior to loading each new s∉	equence:			
Clear Input					
2. Select QuikChange® mutagenesis I	kit that you are using:				
QuikChange® II	 Help in choosing a mu 	itagenesis kit			
3. Find your DNA sequence by pressi	ng				
Load a file from your hard-drive:	Or, paste plain text or FASTA-for	rmatted DNA sequence in the box bel	OW:		
No file selected Browse_	atagatatagacagacatacatcag acatcatacagcaga	acatatacaggaggaggatacacag			
4. Load it.					
Upload Now - or - Upload Transla	ated				
or specify a DNA region to translate from	n to	Up	load Translated Re	egion	
5. Select up to seven nucleotides that	you want to change 💿				
DNA: change nucleotide(s) to: g	Site 2 Site 3 Si	ite 4 Site 5 Site 6	Site 7 -*- ▼]	
or		stado wiii not be deletedy			
Insert between two checked nucleotic	les				
1 a 2 t 3 a 10 g 11 a 12 19 a 20 c 21 28 a 29 t 30 37 a 38 g 39 46 c 47 a 48 55 c 56 a 57 64 g 65 a 57	a 4g 5a c 13a 14g a 22t 23c a 31t 32a g 40a 41g c 49a 50g t 58a 59c	$ \begin{array}{c c} 6 t & 7 a \\ 15 a & 16 c \\ \hline 24 a & 25 g \\ 33 c & 34 a \\ 42 g & 43 a \\ 51 a & 52 c \\ 60 a & 61 g \\ \end{array} $	8 t 17 a 35 g 44 t 53 a 62 c	9 a 18 t 27 c 36 g 45 a 54 t 63 a	(1)
	sequences.				y (
Design Primers					

Clear this form to load a new sequence:

Clear Input

⊖ Insert be	tween two checke	ed nucleotides							
 1 a 10 g 19 a 28 a 37 a 46 c 55 c 64 g 	2 t 11 a 20 c 29 t 38 g 47 a 56 a 65 a	3 a 12 c 21 a 30 a 39 g 48 c 57 t	☐ 4 g ☐ 13 a ☐ 22 t ☐ 31 t ☐ 40 a ☐ 49 a ☐ 58 a	☐ 5 a ☐ 14 g ☐ 23 c ☐ 32 a ☐ 41 g ☐ 50 g ☐ 59 c	☐ 6 t ☐ 15 a ☑ 24 a ☐ 33 c ☐ 42 g ☐ 51 a ☐ 60 a	☐ 7 a ☐ 16 c ☐ 25 g ☐ 34 a ☐ 43 a ☐ 52 c ☐ 61 g	 8 t 17 a 26 a 35 g 44 t 53 a 62 c 	9 a 18 t 27 c 36 g 45 a 54 t 63 a	
(∢(Finally, obt	ain your designe imers	ed primer seque	nces.))
Clear this fo	orm to load a ne	w sequence:							
Clear Inpu	t								
Primer	sequences	:							

Primer Name	Primer Sequence (5' to 3')
	5'-atcctcctctgtatatgtcggatgtatgtctgtctatatc-3'
a24c_	5'-gatatagacagacatacatccgacatatacaggaggaggat-3'

Oligonucleotide information:

Primer Name	Length (nt.)	Tm	Duplex Energy at 68 °C	Energy Cost of Mismatches	
	41	78.60°C	-45.55 kcal/mole	3.05%	
a24c_	41	78.60°C	-49.02 kcal/mole	3.83%	

Primer-template duplexes:

Primer Name	Primer-Template Duplex	
	gatatagacagacatacagacatatacaggaggaggataca	
	3'-ctatatctgtctgtatgtaggctgtatatgtcctcctccta-5'	
	5'-gatatagacagacatacatccgacatatacaggaggaggat-3'	
a24c_		
	???ctatatctgtctgtatgtagtctgtatatgtcctcctcctatgt	
(1))))

General Primer Design Principles

- PCR Steps: Denature (95 °C), anneal (60 °C), extend (70 °C)
- Considerations:
 - Melting Temperature: Should be 52-58 °C
 - GC Content: 40-60%
 - Length: ~30 bp (but longer can be okay)
 - Secondary Structure: Avoid if possible
- Lots of software exists (some costs \$\$\$). For more information (some trial and error here):

https://goo.gl/4EwMG3 (Life Technologies)

http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html

Example: General Approach

COILC

Other Calculators: GeneRunner

- Download (free) from <u>http://generunner.net/</u>
- Analysis → Oligo brings up window to the right
- Suggested options shown to the right
 - SantaLucia temperature & salt recommended
 - Check your specific dNTP, DNA, Mg²⁺ and salt concentrations

(x) Oligo - K19	E5_T7_LV0	372_25.seq				
CAACTACT	ATCGCT	GTTGATGCTGAAAC				
Q L L	S L					
GTTGATGA	TAGCGA	CAACTACGACTTTG				
Frame +1	~ st (▼	10 Cut Sites	▼ × 29			
Show	22-28	NNNNNC	▼ × 2			
Mol Wt:	8547.6	<sense oligo=""> Strand Type</sense>	TM Method			
Tm:	62.8	From: - • 5' • DNA	SantaLucia			
Filter Tm:	55.Z	Length: 28 O3' ORNA	Breslauer			
%GC Tm:	53.4	Show Search Edit other Switch	○ Nearest Nbr			
GC+AT Tm:	80.0	dNTP con (milli Mol):	Salt Correction			
nMol/A260:	3.8	DNA con (nano Mol): 50.00	SantaLucia			
ug/A260:	32.2	Salt con (milli Mol): 50.00	◯ Schildkraut			
%GC:	42.9	Divalent con (milli Mol): 1.50	Owczarzy			
dG:	-33.6	3'-end len: 7 Base run >= 4				
dH:	-202.7	Pallen >= 8 Stem len >= 3	Tm Calcs			
dS:	-527.0	Guidance:	Maxlen: 35			
3'-end dG:	-5.5	_				
1 of	4 <	- Sort Tm: 42.3	dG: -0.8			
Hairpin lo	ops 🔘 Di	mers OBulge loops OInternal loops	O Match sites			
5' CAACTACTA						
3' CAAAGTCGTAGTTGTCGCT						
STEM AT 1 IS 4 BP LONG, LOOP = 10						
<	<					
Done	Done Save Name Print Defaults Help Tips					

Other Calculators: Phusion Calculator

Product Group		
Phusion	•	Anneal at
Polymerase/Kit		67 °C
Phusion High-Fidelity DNA Polymerase (H	IF Buffer) •	
Primer Concentration (nM)		
500	C Reset concentration	Why is this so high
Primer 1		Primer 1
CAACTACTATCGCTGTTGATGCTGAAAC		28 nt
Primer 2		Tm: 64°C
GCATCAACAGCGATAGTAGTTGTTTCGQ		
Switch to batch mode	Clear	Primer 2
	Use example input	28 nt
		46% GC Tm: 66°C

- Some polymerases have their own calculator specific to buffers, recommendations
- Phusion Polymerase found at NEB website (<u>https://tmcalculator.neb.com/#!/main</u>)

GB3 Protein and Expression Plasmid (pET-15b)

WT GB3 DNA/Protein Sequence:

Successful Mutagenesis Primers for GB3 K19I

• Annealing temperature used: 53 °C

Think And Discuss

Compared to DNA, why is it harder to calculate melting temperature and dimerization for proteins?

Example: Sequence Analysis of SH3 Mutants

• Step 1: Design Primers (for T22G)

Agilent Web Program (we'll do this)

• Step 2: Do experiments, get sequence of result

 Step 3: Check sequence to see if mutation was successful (we'll do this)

Think and Discuss

What problems could arise when introducing new mutations in to a known sequence?

Summary

- Advanced computational tools for nucleic acids depend on two things:
 - The simplicity of DNA primary structure (4 bases)
 - The regularity of Watson-Crick base pairing

 Combining DNA and protein tools makes it possible to perform very advanced sequence analysis