Model Fitting using Excel and Gnuplot

Biochemistry Boot Camp 2022 Session #8 Nicholas Fitzkee nfitzkee@chemistry.msstate.edu

Think and Discuss

What is a scientific model?

Properties of Models

- Explain an <u>observable quantity</u> (e.g. measured heat, growth rate, etc.)
- Express quantity in terms of understandable <u>parameters</u> and fundamental constants (equilibrium constant, rate constants, etc.)
- Should be <u>predictive</u> (so we can test the model)

Examples: Biochemical Models

• Single site binding: $P + L \rightleftharpoons PL$

$$\bar{\nu} = \frac{[PL]}{P_0} = \frac{(P_0 + L_0 + K) - \sqrt{(P_0 + L_0 + K)^2 - 4P_0L_0}}{2P_0}$$

• Folding vs. Temperature: $N \rightleftharpoons U$

$$f = \frac{1}{1+K} = \frac{1}{1+e^{-(\Delta \bar{H}^0 - T\Delta \bar{S}^0)/RT}}$$

Example Radioactive Decay

Example Radioactive Decay

How to Find Parameters?

 Minimize the difference between the observed and modelcalculated values:

$$\chi_{n}^{2} = \frac{1}{N_{d}} \sum_{i} \left\{ \frac{1}{\sigma_{i}^{2}} [y_{i} - f(x_{i})]^{2} \right\}$$

- Definitions:
 - y_i = observed data point *i*
 - $f(x_i)$ = model calculated point x_i (will change when parameters are changed)
 - $-\sigma_i$ = uncertainty for point *i*
 - N_d = # of observations # of parameters

Minimizing Chi-Square

https://ned.ipac.caltech.edu/level5/Wall2/Wal3_4.html

Think and Discuss

The accepted half-life for ^{137m}Ba is 153 s. Is our value of 144.6 good?

How to Assess a Fit: #1: Does the fit look good?

How to Assess a Fit: #2: Is Normalized Chi-Square $(\chi_n^2) \le 1.0$?

How to Assess a Fit: #3: Check the Residuals Plot

Bad Fit Example: Model Over-Predicts Data Radioactive Decay of ^{137m}Ba

Bad Fit Example: Systematic Trends in Residuals

Radioactive Decay of ^{137m}Ba

Biochemical Model Building

- **Step 1:** Come up with a hypothesis about how a system works
 - How many binding sites?
 - Is there cooperativity?
- **Step 2:** Translate the qualitative hypotheses into an observable mathematical form with *parameters*
 - Example parameters: K, tau, N
 - Parameters may not be known
- **Step 3:** Design an experiment that that can produce observables from step 2; perform the experiment
 - Optimize the parameters to make the fit look as good as possible
- **Step 4:** Assess the fit Is the agreement convincing?

- What is association constant?
- How many binding sites?

$$DNA + L \rightleftarrows DNA \cdot L$$
$$DNA \cdot L + L \rightleftarrows DNA \cdot L_2$$

$$DNA \cdot L_{n-1} + L \rightleftarrows DNA \cdot L_n$$

 Assumption in our model: All equilibrium constants are identical (equivalent binding)

• Experimentally, it is possible to measure the <u>degree of binding</u> (\bar{v}) as a function of free drug concentration (L):

$$\bar{\nu} = \frac{nK_{eq}L}{1 + K_{eq}L}$$

• We observe \bar{v} and L; K_{eq} and n are the *parameters*.

Binding of TMPyP4 to Quadruplex DNA

Download this data as binding.txt from the website.

The Power of Gnuplot

 Minimizing chi-square can be very tricky; Excel isn't always up to the task

• What about estimating uncertainties of the parameters?

 Gnuplot is a tool that can handle some of these challenges (see tutorial)

Summary

 Biochemical models allow us to quantify and predict the behavior of biological systems

• Fitting parameters allow us to optimize agreement between model and observations

Programs like Gnuplot enable generalized model fitting with statistical analysis