Nucleic Acids and Molecular Biology: Part I

Biochemistry Boot Camp 2023!

<u>Deoxy-Ribose Nucleic Acids</u> (DNA and RNA)

- DNA and RNA polymers of (deoxy) ribose nucleotides
- DNA chromosomes, mitochondria and chloroplasts
- DNA Carries the genetic information
- DNA ______ -> RNA _____-> Protein

Nucleotide Structure

Molecules of Life, pp. 15

Nucleic Bases

Molecules of Life, pp. 20

Nomenclature (Scientific Names)

	Base	<u>Nucleoside</u>	<u>Nucleotide</u>	<u>Nucleic Acid</u>
Purine	Adenine	Adenosine	Adenylate	RNA
		Deoxyadenosine	Deoxyadenylate	DNA
	Guanine	Guanosine	Guanylate	RNA
		Deoxyguanosine	Deoxyguanylate	DNA
Pyrimidines	Cytosine	Cytidine	Cytidylate	RNA
		Deoxycytidine	Deoxycytidylate	DNA
	Thymine	Thymidine	Thymidylate	
		Deoxythymidine	Deoxythymidylate	DNA
	Uracil	Uridine	Uridylate	RNA

Nucleic Acids are Polymers

DNA & RNA Polymerase: Build up DNA and RNA from nucleoside triphosphates $(5' \rightarrow 3' \text{ synthesis})$

Convention: RNA/DNA typically is read from 5' to 3' direction (e.g. 5'-ATTGCAAC-3')

Molecules of Life, pp. 21

DNA vs RNA

- DNA less reactive
- RNA is easily attacked by enzymes

Science, <u>www.phschool.com</u> (Accessed on June 02, 2014)

DNA and RNA are Similar but Different

Watson – Crick Base Pairing (Antiparallel) Double Helix

Molecules of Life, pp. 23

Base Pairing

- RNA can "hybridize" with DNA, forming mixed strands
- **Example:** What's the reverse complement to AUCCGCCTT?

Nucleic Acid Structure

- Bases are planar
- Nucleic acids
 - 5 backbone torsion angles
- Proteins
 - 2 backbone torsion angles
- Nucleic acid structure can be much more complex compared to protein

Saenger, W. Principles of Nucleic Acid Structure.

Nucleic Acid Sugar Pucker

 v angles are related, so sugar ring can be simplified

 Think "chair" and "boat" forms of cyclohexane

Figure 1.38 Sugar conformations of nucleic acids. The pucker of the sugar ring in RNA and DNA is defined relative to the plane formed by the C1'-carbon, C4'-carbon, and O4'-oxygen of the five-member ring. The *endo* face lies above the plane, toward the nucleobase, while the *exo* face lies below the plane.

van Holde, et al. Principles of Physical Biochemistry.

Nucleic Acid Primary Structure

• Just like proteins: the sequence of bases

5'-dAdGdTdTdCdAdCdCdC-3' (DNA) AGTTCACCC

5'-AGUUCACCC-3' (RNA)

Secondary Structure

Source: Wikipedia, "RNA Secondary Structure," "Nucleic Acid Secondary Structure"

Tertiary Structure

Tertiary Structure

	Average Torsion Angles for Nucleic Acid Helices (i					s (in °)	
Structure Type	Alpha	Beta	Gamma	Delta	Epsilon	Zeta	Chi
A-DNA (fibres)	-50	172	41	79	-146	-78	-154
GGCCGGCC	-75	185	56	91	-166	-75	-149
B-DNA (fibres)	-41	136	38	139	-133	-157	-102
CGCGAATTCGCG	-63	171	54	123	-169	-108	-117
Z-DNA (C residues)	-137	-139	56	138	-95	80	-159
Z-DNA (G residues)	47	179	-169	99	-104	-69	68
DNA-RNA decamer	-69	175	55	82	-151	-75	-162
A-RNA	-68	178	54	82	-153	-71	-158

Blackburn and Galt. Nucleic acids in chemistry and biology.

Tertiary and Quaternary Structure

Ribozyme: An RNA capable of catalyzing a chemical reaction

The ribosome contains a significant amount of RNA as well as proteins

Macromolecules can perform incredibly diverse structures! (And we haven't even mentioned lipids and sugars.)

Wikipedia, "Group I Catalytic Intron." Accessed 8/23/2012.

DNA Damage = Major Driving Force in Cancer

- UV light can generate ~ 100,000 lesions per cell per hour.
- Healthy human cells generate ~ 10,000 lesions per cell / day.
- Repair pathways for fixing some but <u>NOT</u> all of this damage.

Think and Discuss

Why is DNA damage bad? Could DNA damage ever be good?

DNA and RNA Science Can Help!

Nucleic Acid Extinction Coefficient

DNA Concentrations: Often measured in μ g/mL (or the equivalent ng/ μ L) instead of M, mM, etc. Also sequence isn't exactly known in many cases.

Rule of Thumb: For doublestranded, plasmid DNA, the extinction coefficient at 260 nm is

0.020 (µg/mL)⁻¹ cm⁻¹

DNA vs. Protein Absorbance

DNA Concentrations: At 260 nm, doublestranded DNA has an extinction coefficient of **Protein Concentrations:** At 280 nm, the GB3 protein has an extinction coefficient (in equivalent units) of

 $0.020 \ (\mu g/mL)^{-1} \ cm^{-1}$

 $0.0016 \ (\mu g/mL)^{-1} \ cm^{-1}$

Which is more sensitive?

What are the implications?

Nucleic Acids – Smaller Molecules

OligoAnalyzer

	Paramete	rsets	ANALYZE
AAG	SpecSheet (Default)		HAIRPIN
			SELF-DIMER
	Target type	DNA 📉	HETERO-DIMER
	Oligo Conc	0.25 µM	NCBI BLAST
CLEAR SEQUENCE	Na ⁺ Conc	50 mM	TM MISMATCH
	Mg ⁺⁺ Conc	0 mM	ADD TO ORDER
	dNTPs Conc	0 mM	
	MOD • MIXED BASES • A AG 	MOD • MIXED BASES • Parameter AAG SpecSheet Target type Oligo Conc CLEAR SEQUENCE Na* Conc Mg** Conc Mg** Conc dNTPs Conc	MOD ► MIXED BASES ► AAG SpecSheet (Default) Target type DNA ► Oligo Conc 0.25 µM CLEAR SEQUENCE Na⁺ Conc Mg+⁺ Conc 0 mM dNTPs 0 mM

- IDT DNA Analyzer (extinction coefficient, Tm): https://www.idtdna.com/pages/tools/oligoanalyzer
 - Need to log in, create an account (free)

Instructions | Definitions | Feedback

Calculating Reverse Complement

Reverse				
Complement				
Reverse Complement converts a DNA sequence into its reverse, complement, or reverse-complement counterpart. You may want to work with the reverse-complement of a sequence if it contains an ORF on the reverse strand.				
>Sample sequence GGGGaaaaaaatttatatat				
SUBMIT	.::]			
Convert the DNA sequence into its	reverse-complement 👻 counterpart.			
[home]	l			

 Bioinformatics.org Calculator (no-frills): <u>http://bioinformatics.org/sms/rev_comp.html</u>

DNA Translation Tool

• Site:

http://web.expasy.org/translate/

• Input: DNA or RNA sequence $(5' \rightarrow 3')$ orientation

• **Output:** All six possible translation frames

Other Databases

 NCBI Databases work for DNA sequences, too (reference sequences start with NM_)

 PDB also houses a number of RNA/DNA structures in addition to proteins

Think And Discuss

How can these databases be used to make your lab work easier? What are some practical examples?

DNA "Melting"

- Two strands come together:
 - How much work can be done?
 - Which side of the reaction does temperature favor?

Thermal Melts

- Adding heat favors highly random systems, DNA will separate at high temperature
 - Secondary and tertiary structure is lost, primary is maintained

• What will affect the melting temperature?

Predicting Melting Temperatures

- To calculate T_m, add 4 °C for each G-C pair, and 2 °C for each A-T
 - Not terribly accurate

- Example: GCCCTGAAGGTCAAGTCCCCC
 - − 14 G-C = 56 °C
 - − 7 A-T = 14 °C
 - Prediction is 70

Predicting Melting Temperatures

• IDT OligoAnalyzer:

https://www.idtdna.com/pages/tools/oligoanalyzer

• **Input:** Your DNA sequence of interest, salt concentration

Output: T_m, extinction coefficient, %GC content

Predicting Secondary Structure

 mfold Web Server: <u>http://mfold.rna.albany.edu/?q=mfold</u>

• Input: RNA/DNA sequence

Example: HIV TAR RNA

 Trans-Activation Response Element – Binds with a protein (Tat) to promote viral transcription

• Sequence:

GGGUCUCUCUGGUUAGACCAGAUCUGAGCCUGGGAGCUCUCU GGCUAACUAGGGAACCCAC

Nuclear Magnetic Resonance (NMR)

Secondary structure propensity

Discuss: What can you do with NMR

- Verify composition of small molecules
- Determine structure of protein and or protein complexes
- Directly investigate movement
 (limited to specific time scales)
 - (limited to specific time scales
- Quantify conformational change
- and much more

Protons provide information about structure and dynamics

¹H chemical shifts (ppm)

NMR: Base to sugar connectivity

NMR: Base to sugar connectivity

Question: How could we use this to understand DNA damage ?

How are damages sites recognized for repair?

Normal

Mazurek et al. PNAS 2009

••• Medium / Weak

Weak / No contact

DNA as a Molecular Wire?

Johnson et. al JMB 2012

Think and Discuss

What technologies have in part been developed based on DNA/RNA structural biology advancements?