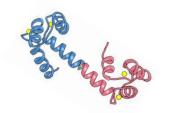
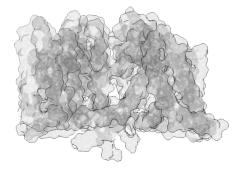
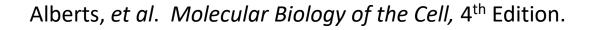
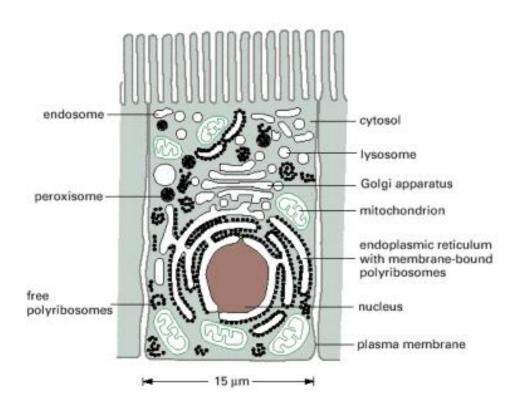

Nucleic Acids and Molecular Biology Part II

Biochemistry Boot Camp 2023!



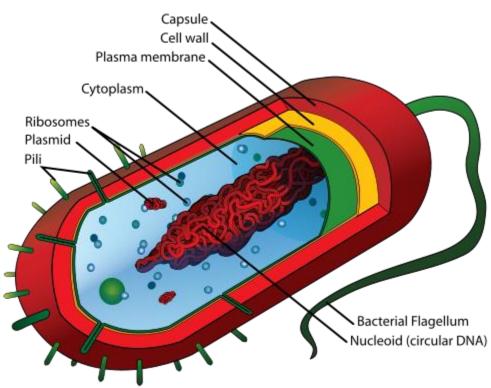


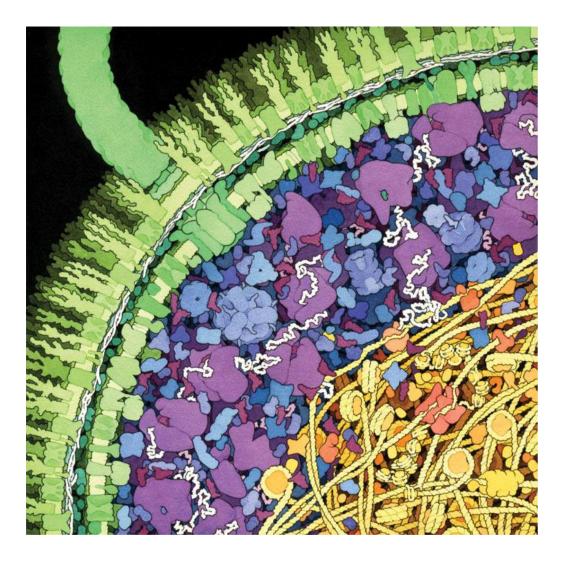



Review of Intro Biology

 Parts of a eukaryotic animal cell

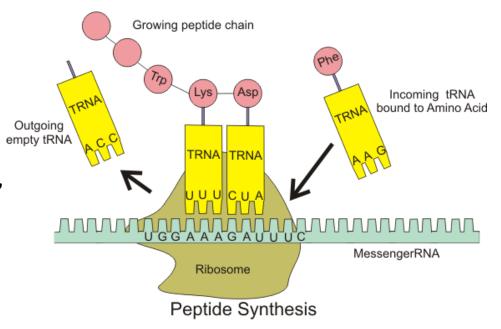
 Has a nucleus where DNA is stored


 Membrane-bound organelles


Review of Intro Biology

- Parts of a prokaryotic bacterial cell
- No nucleus: DNA is not linear but circular (no ends)
- No organelles, but ribosomes, etc. exist in the cytoplasm

Source: Wikipedia, "Bacterial Cell Structure."


It's Crowded in There!

Source: Goodsell, D. http://mgl.sripps.edu/people/goodsell/illustration/public/

Central Dogma

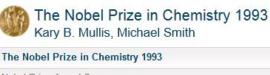
- DNA → mRNA "Transcription"
 - Synthesized RNA
 Polymerase
 - RNA formed from 5' to 3'

- mRNA → Protein "Translation"
 - Synthesized by ribosome
 - New proteins formed from NT to CT

Trick: Reading the DNA in the "standard way", one can easily identify the codons for peptide synthesis.

Genetic Code

nonpolar polar basic acidic (stop codon)


1st				2nd b	ase				3rd
base		U		С		Α		G	base
	UUU	(Dha(E) Dhamidalanina	UCU		UAU	(Turol) Turocine	UGU	(Cup (C)) Cuptoing	U
	UUC	(Phe/F) Phenylalanine	UCC		UAC	(Tyr/Y) Tyrosine	UGC	(Cys/C) Cysteine	С
U	UUA		UCA	(Ser/S) Serine	UAA	Stop (Ochre)	UGA	Stop (Opal)	Α
	UUG		UCG		UAG	Stop (Amber)	UGG	(Trp/W) Tryptophan	G
	CUU	(Lou/L) Louising	CCU		CAU	A Re A D I Revisions	CGU	l	U
с	CUC	(Leu/L) Leucine	CCC (Pro/P) Proline CAC CAC	(nis/n) histidine	CGC	(Arg/R) Arginine	С		
C	CUA				CAA	(Gln/Q) Glutamine	CGA	(Alg/R) Alginine	Α
	CUG		CCG		CAG	(Gin/Q) Giutanine	CGG		G
	AUU		ACU		AAU	(Acp/N) Acparaging	AGU	(Ser/S) Serine	U
Α	AUC	(Ile/I) Isoleucine	ACC	(Thr Throoping	AAC	(Asn/N) Asparagine	AGC	(Sell'S) Sellie	С
A	AUA		ACA	(Thr/T) Threonine	AAA	(Luc/V) Lucino	AGA	(Arg/R) Arginine	Α
	AUG ^[A]	(Met/M) Methionine	ACG		AAG	(Lys/K) Lysine	AGG	(Alg/R) Alginine	G
	GUU		GCU		GAU	(Asp/D) Aspartic acid	GGU	J	U
G	GUC	(Val/V) Valine	GCC (Ala/A) Alanine GA	GAC	(Aspro) Aspartic actu	GGC	(Gly/G) Glycine	С	
0	GUA		GCA		GAA	(Glu/E) Glutamic acid	GGA	(Oly/O) Olycine	Α
	GUG		GCG		GAG		GGG		G

Standard genetic code

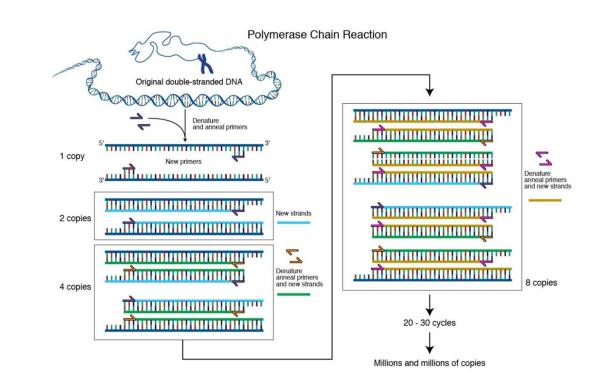

Source: Wikipedia, "Genetic Code"

Why is this Useful?

- Site-Directed Mutagenesis
- Good Primers:
 - T_m > 78 °C (2 mM MgCl₂, 50 mM NaCl)
 - GC content > 40%
 - No secondary structure (< 50 bp)
 - End with G or C

Nobel Prize Award Ceremony

Kary B. Mullis


Michael Smith

The Nobel Prize in Chemistry 1993 was awarded "for contributions to the developments of methods within DNA-based chemistry" jointly with one half to Kary B. Mullis "for his invention of the polymerase chain reaction (PCR) method" and with one half to Michael Smith "for his fundamental contributions to the establishment of oligonucleotide-based, site-directed mutagenesis and its development for protein studies".

Photos: Copyright © The Nobel Foundation

Polymerase Chain Reaction (PCR)

- 3 main steps
- 1. denature
- 2. anneal
- 3. polymerase activity

 Key consideration: Temperature for primer annealing (computational tools)!

https://www.genome.gov/genetics-glossary/Polymerase-Chain-Reaction

Example: Designing Primers

*	Agilent Technologie	s Genomics	S English ▶ United St	ates Contact Us Logout My Account Quick Order 🛫 Cart (0)
Home	Products & Services	Applications	Resources & Support	Search products or part numbers
? Help The Quikt described informatio	· · · ·	n supports mutagenic	primer design for your QuikChang	eral Info Links BioCalculators QuikChange Primer Design ge mutagenesis experiments. Using primer design guidelines ences with the optimal melting temperature. Read Help for more
1. It is re	commended that you clear th	is form prior to load	ing each new sequence:	

1. It is recommended that you clear th	nis form prior to loading each new s∉	equence:			
Clear Input					
2. Select QuikChange® mutagenesis I	kit that you are using:				
QuikChange® II	 Help in choosing a mu 	itagenesis kit			
3. Find your DNA sequence by pressi	ng				
Load a file from your hard-drive:	Or, paste plain text or FASTA-for	rmatted DNA sequence in the box bel	OW:		
No file selected Browse_	atagatatagacagacatacatcag acatcatacagcaga	acatatacaggaggaggatacacag			
4. Load it.					
Upload Now - or - Upload Transla	ated				
or specify a DNA region to translate from	n to	Up	load Translated Re	egion	
5. Select up to seven nucleotides that	you want to change 💿				
DNA: change nucleotide(s) to: or O Delete a region between two checked	• * • • * •	ite 4 Site 5 Site 6	Site 7 -*- ▼]	
or		stado wiii not be deletedy			
Insert between two checked nucleotic	les				
1 a 2 t 3 a 10 g 11 a 12 19 a 20 c 21 28 a 29 t 30 37 a 38 g 39 46 c 47 a 48 55 c 56 a 57 64 g 65 a 57	13 a 14 g a 22 t 23 c a 31 t 32 a g 40 a 41 g c 49 a 50 g	$ \begin{array}{c c} 6 t & 7 a \\ 15 a & 16 c \\ \hline 24 a & 25 g \\ 33 c & 34 a \\ 42 g & 43 a \\ 51 a & 52 c \\ 60 a & 61 g \\ \end{array} $	8 t 17 a 35 g 44 t 53 a 62 c	9 a 18 t 27 c 36 g 45 a 54 t 63 a	(1)
	sequences.				y (
Design Primers					

Clear this form to load a new sequence:

Clear Input

🗆 11 a	_	🗆 4 g	🗆 5 a	🗆 6 t	🗆 7 a	🗆 8 t	🗆 9 a	
	🗆 12 c	🗆 13 a	🗆 14 g	🗆 15 a	□ 16 c	🗆 17 a	🗆 18 t	
□ 20 c	🗆 21 a	🗆 22 t	23 c	🗹 24 a	🗆 25 g	🗆 26 a	27 c	
							🗆 36 g	
	🗆 57 t	─ 58 a	_ 59 c	🗆 60 a	🗆 61 g	□ 62 c	🗆 63 a	
🗆 65 a								
))
n vour designe	d primer seque	ices.						
, jour acoigne	a printer ooque.							
ers								
m to load a ne	w sequence:							
	29 t 38 g 47 a 56 a 65 a	29 t 30 a 38 g 39 g 47 a 48 c 56 a 57 t 65 a	29 t 30 a 31 t 38 g 39 g 40 a 47 a 48 c 49 a 56 a 57 t 58 a 65 a 65 a	29 t 30 a 31 t 32 a 38 g 39 g 40 a 41 g 47 a 48 c 49 a 50 g 56 a 57 t 58 a 59 c 65 a 57 t 58 a 59 c	29 t 30 a 31 t 32 a 33 c 38 g 39 g 40 a 41 g 42 g 47 a 48 c 49 a 50 g 51 a 56 a 57 t 58 a 59 c 60 a 65 a oppose 60 a 65 a 57 t	29 t 30 a 31 t 32 a 33 c 34 a 38 g 39 g 40 a 41 g 42 g 43 a 47 a 48 c 49 a 50 g 51 a 52 c 56 a 57 t 58 a 59 c 60 a 61 g 65 a 9 c 60 a 61 g 65 a	29 t 30 a 31 t 32 a 33 c 34 a 35 g 38 g 39 g 40 a 41 g 42 g 43 a 44 t 47 a 48 c 49 a 50 g 51 a 52 c 53 a 56 a 57 t 58 a 59 c 60 a 61 g 62 c 65 a 57 t 58 a 59 c 60 a 61 g 62 c	29t 30 a 31t 32 a 33 c 34 a 35 g 36 g 38 g 39 g 40 a 41 g 42 g 43 a 44 t 45 a 47 a 48 c 49 a 50 g 51 a 52 c 53 a 54 t 56 a 57 t 58 a 59 c 60 a 61 g 62 c 63 a 65 a 9 c 9 c 60 a 61 g 62 c 63 a

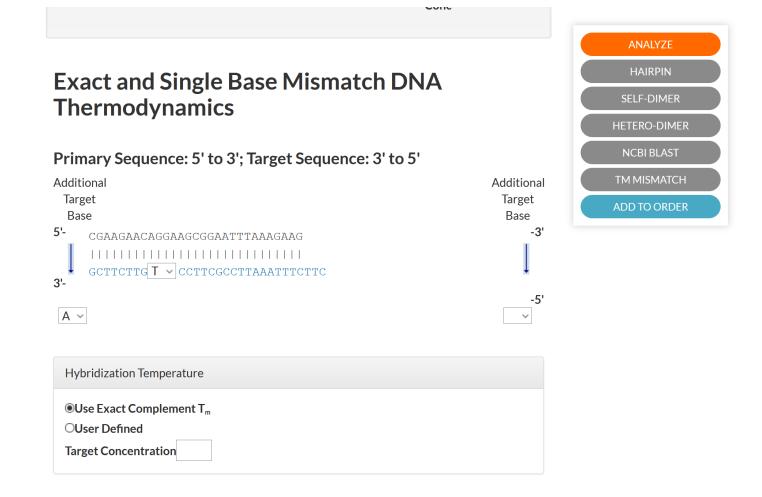
Primer Name	Primer Sequence (5' to 3')
	5'-atcctcctctgtatatgtcggatgtatgtctgtctatatc-3'
a24c_	5'-gatatagacagacatacatccgacatatacaggaggaggat-3'

Oligonucleotide information:

Primer Name	Length (nt.)	Tm	Duplex Energy at 68 °C	Energy Cost of Mismatches	
	41	78.60°C	-45.55 kcal/mole	3.05%	
a24c_	41	78.60°C	-49.02 kcal/mole	3.83%	

Primer-template duplexes:

Primer Name	Primer-Template Duplex	
	gatatagacagacatacatcagacatatacaggaggaggataca	
	3'-ctatatctgtctgtatgtaggctgtatatgtcctcctccta-5'	
	5'-gatatagacagacatacatccgacatatacaggaggaggat-3'	
a24c_		
	???ctatatctqtctqtatqtaqtctqtatatqtcctcctcctatqt	
90)


General Primer Design Principles

- PCR Steps: Denature (95 °C), anneal (60 °C), extend (70 °C)
- Considerations:
 - Melting Temperature: Should be 52-58 °C
 - GC Content: 40-60%
 - Length: ~30 bp (but longer can be okay)
 - Secondary Structure: Avoid if possible
- Lots of software exists (some costs \$\$\$). For more information (some trial and error here):

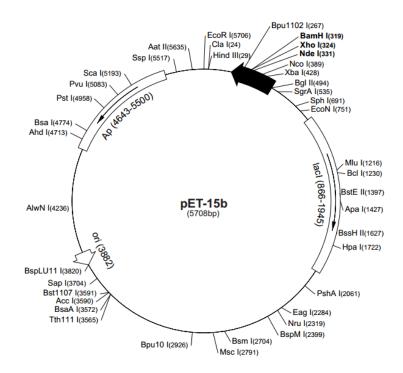
https://goo.gl/4EwMG3 (Life Technologies)

http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html

Example: General Approach

Other Calculators: GeneRunner

- Download (free) from <u>http://generunner.net/</u>
- Analysis → Oligo brings up window to the right
- Suggested options shown to the right
 - SantaLucia temperature & salt recommended
 - Check your specific dNTP, DNA, Mg²⁺ and salt concentrations


(x) Oligo - K19	E5_T7_LV0	372_25.seq	
Q L L CAACTACT	S L ATCGCT	GTTGATGCTGAAAC L M L K GTTGATGCTGAAAC CAACTACGACTTTG	
Frame +1		10 Cut Sites	▼ × 29
Show	22-28	NNNNNC	▼ × 2
Mol Wt: Tm: Filter Tm: %GC Tm: GC+AT Tm: nMol/A260: ug/A260: %GC: dG: dH: dS:	8547.6 62.8 55.2 53.4 80.0 3.8 32.2 42.9 -33.6 -202.7 -527.0	<sense oligo=""> Strand Type From: - ● DNA Length: 28 ○ 3' PNA Show Search Edit other Switch dNTP con (milli Mol): 0.60 0.60 DNA con (nano Mol): 50.00 50.00 Salt con (milli Mol): 1.50 3'-end len: 7 Base run >= 8 Stem len >= 3 Guidance: — —</sense>	TM Method SantaLucia Breslauer Nearest Nbr Salt Correction SantaLucia Schildkraut Owczarzy Force Short Tm Calcs Max Len: 35
		Sort Tm: 42.3 mers Bulge loops Internal loops TACTA Internal loops Internal loops TCGCT IONG, LOOP = 10 Internal loops	dG: -0.8 Match sites

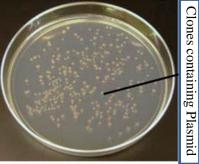
Other Calculators: Phusion Calculator

Product Group		
Phusion	•	Anneal at
Polymerase/Kit		67 °C
Phusion High-Fidelity DNA Polymerase (HF Bu	iffer) 🔹	01 0
Primer Concentration (nM) 500	CReset concentration	Why is this so high?
Primer 1		Primer 1
CAACTACTATCGCTGTTGATGCTGAAAC		28 nt 43% GC
Primer 2		Tm: 64°C
GCATCAACAGCGATAGTAGTTGTTTCGQ		
Switch to batch mode	Clear Use example input	Primer 2 28 nt 46% GC Tm: 66°C

- Some polymerases have their own calculator specific to buffers, recommendations
- Phusion Polymerase found at NEB website (<u>https://tmcalculator.neb.com/#!/main</u>)

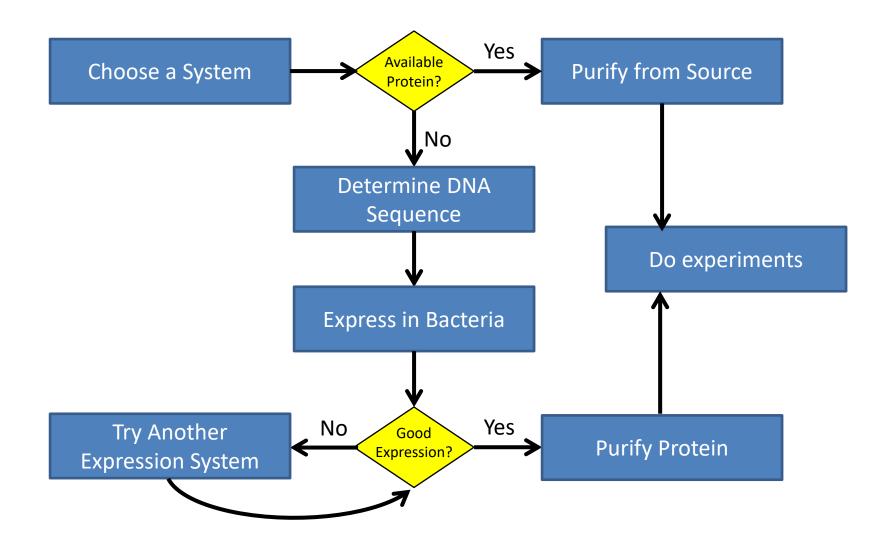
Protein and Expression Plasmid (pET-15b)

WT GB3 DNA/Protein Sequence:

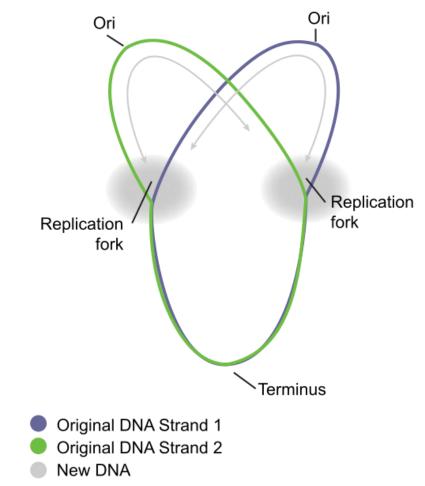


Successful Mutagenesis Primers

Primer Name	Primer Sequence (5' to 3')		-	*
K19I-Fwd	CAACTACT <mark>ATC</mark> GCTGTTGATGCTGAAAC	Parent	nl Bacterial	Mutagenized Plasmid
K19I-Rev	GCATCAACAGC <mark>GAT</mark> AGTAGTTGTTTCGC	Plasmid Amplification Dig	est Recovery	riastillu


Description	Primer Duplex	
K19I -Fwd/ Template	5'-CAACTACT <mark>ATC</mark> GCTGTTGATGCTGAAAC 	After Transform
K19I -Rev/ Template	CATTGAAAGGCGAAACAACTACTAAAGCTGTTGATGCTGAAACTGCAGAAA CGCTTTGTTGATGA <mark>TAG</mark> CGACAACTACG	
K19I -Fwd/ K19I -Rev	CAACTACT <mark>ATC</mark> GCTGTTGATGCTGAAAC CGCTTTGTTGATGA <mark>TAG</mark> CGACAACTACG	No. 20

mation:

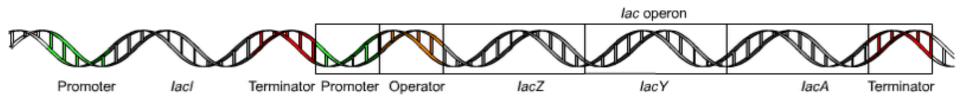

• Annealing temperature used: 53 °C

Recombinant Protein Production

Bacterial DNA: Features

- Chromosome is circular
- Replication starts at the origin of replication (Ori, TTATCCACA)
- **Plasmid:** *Any* circular DNA in the bacterial cell can be replicated if it has an Ori

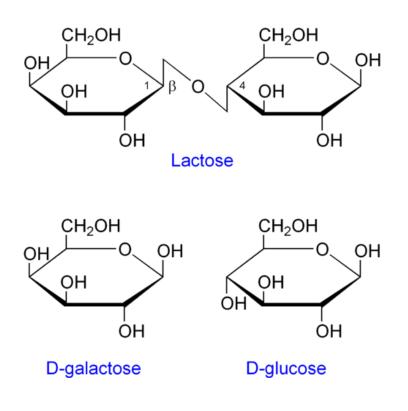
Source: Wikipedia, "Circular Bacterial Chromosome"


The Lactose (lac) Operon

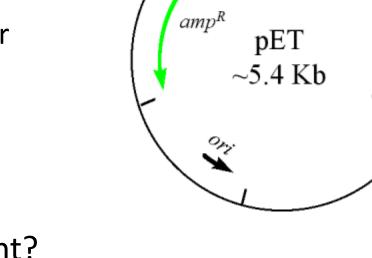
• Idea: Bacteria only want to produce proteins if they are needed

• Why metabolize lactose (hard) when glucose (easy) is available?

• **Operon:** A set of genes (proteins) under the control of other genes in the cell


The Lactose (lac) Operon

Proteins:

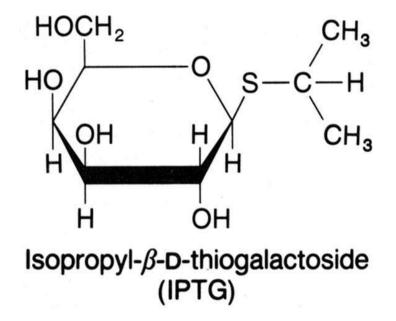

- lacl (lac repressor): binds at operator when no lac present; prevents binding of RNA polymerase at promoter
- lacZ (β-galactosidase): converts Lac in to Gal and Glc by hydrolyzing glycosidic linkage
- lacY (β-galactoside permease): Pumps Lac into the cell

Source: Wikipedia, "Lac Operon"

Bacterial Expression Vectors

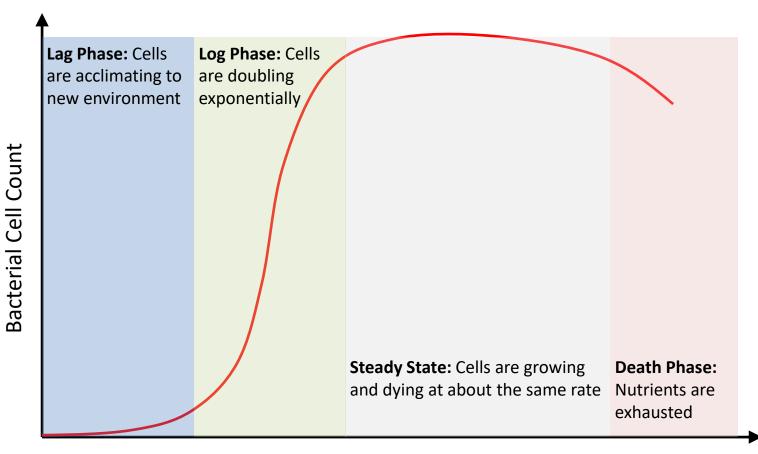
- pET Plasmid Genes
 - Origin of replication
 - Lac repressor (lacl)
 - RNA Pol promoter (P_{T7})
 - Lac Operator (lacO)
 - Polylinker where your
 DNA sequence goes
 (pLink)
 - Ampicillin resistance (amp^R)
- Is this plasmid persistent?

pLink


lac0

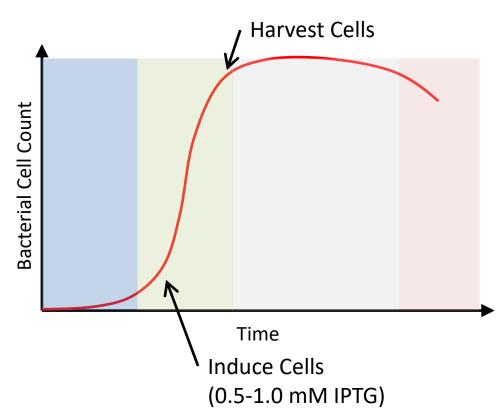
 P_{T7}

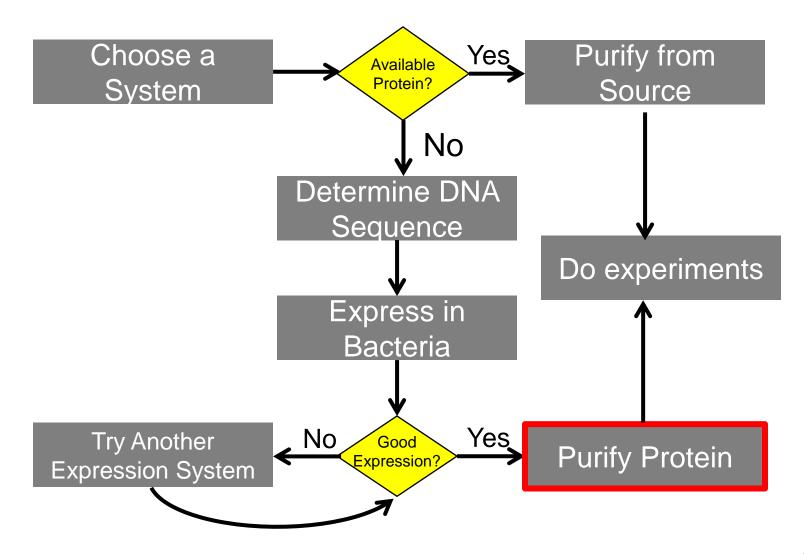
Source: Mike Blaber, BCH5425 Course Notes


Inducible Expression

 IPTG: Turns on protein expression without being hydrolyzed

 Protein expression can be switched on when desired


When Should I Induce?


Time

When Should I Induce?

- Protein expression is greatest during log phase
- Inducing at lag phase may unnecessarily cripple your cells
- Typically, induce at an OD₆₀₀ of 0.5-0.6
- Always follow your lab's protocols!

How to obtain sample?

Overview: Recombinant Protein Production

Obtain or build plasmid molecular biology

Transform into cells

Express cells

e. coli cells, or others such as insect cell lines

multiply #'s using incubated shaker

Induce cells starts production of protein

Harvest cells spin down with centrifuge, collect cell pellet

Overview: Recombinant Protein Production

Resuspend cells

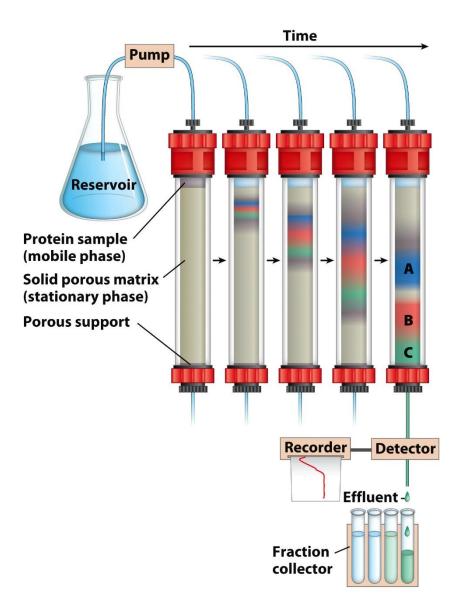
select buffer, salt, and protease inhibitor(s)

Homogonize / dounce / vortex mixing /

Lyse cells sonication, French press

Clarify lysate centrifuge, syringe filter

Ready for chromatorgraphy



A mixture of proteins can be separated

- Recombinant protein production or purification from endogenous tissue
- Separation relies on differences in physical and chemical properties
 - Charge
 - Size
 - Affinity for a ligand
 - Solubility
 - Hydrophobicity
 - Thermal stability
- Chromatography is commonly used for preparative separation

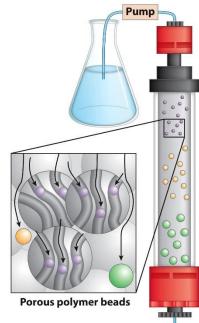
Column Chromatography / Van Deemter eq

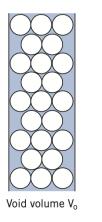
$$HETP = A + rac{B}{u} + (C_s + C_m) \cdot u$$

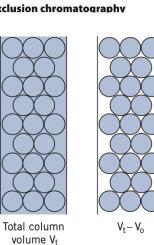
Height Equivilent of Theroetical Plate = a measure of the resolving power of the column [m]

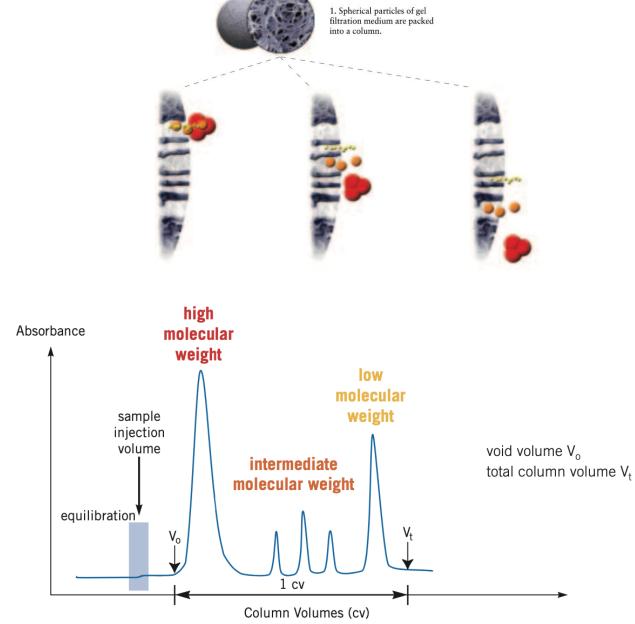
A = Eddy-diffusion parameter, related to channeling through a non-ideal packing [m]

 $B = \frac{diffusion \ coefficient}{coefficient}$ of the eluting particles in the longitudinal direction, resulting in $\frac{dispersion}{m^2 \ s^{-1}}$

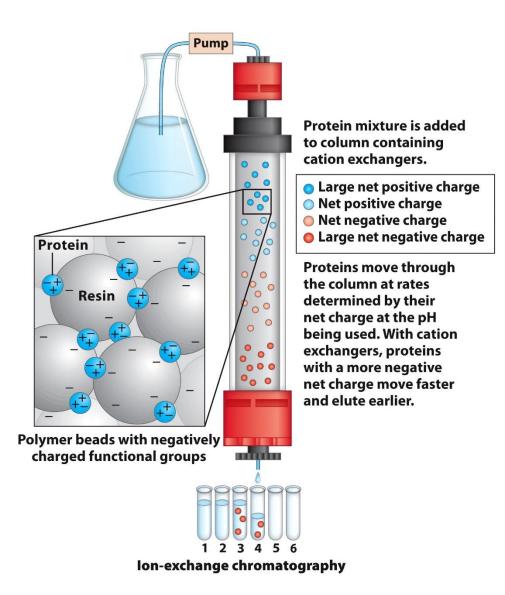

C = Resistance to mass transfer coefficient of the analyte between mobile and stationary phase [s]

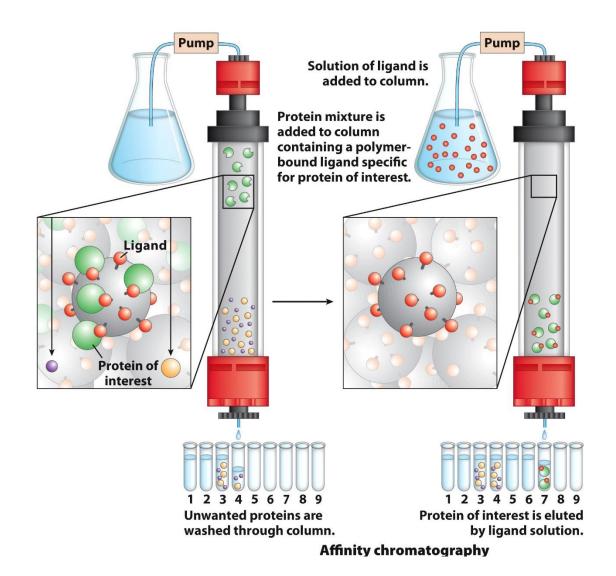

Separation by Size




Protein mixture is added to column containing crosslinked polymer.

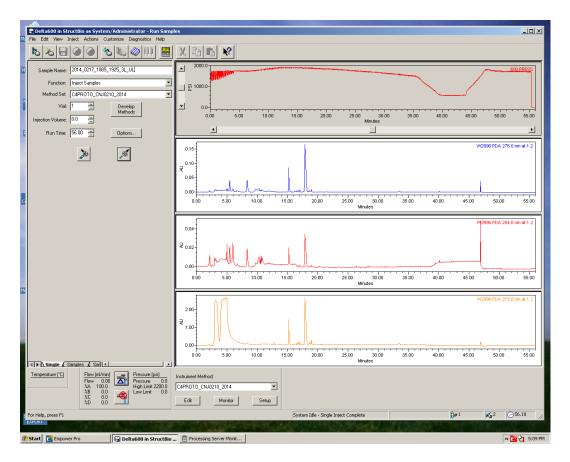
Protein molecules separate by size; larger molecules pass more freely, appearing in the earlier fractions.





Separation by Charge

Separation by Affinity



Separation by Hydrophobicity

Reverse phase chromatography

- stationary phase = Carbon polymer
- mobile phase = often water

Where is the Protein & How Clean is it?

2

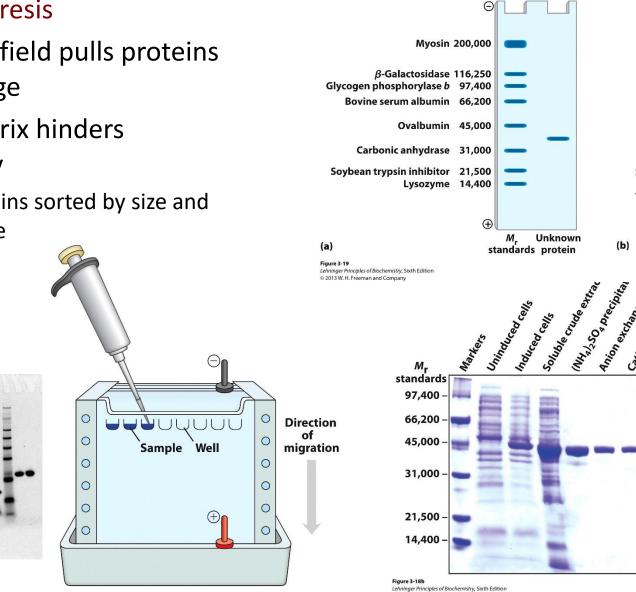
Unknown

protein

Relative migration

log Mr

Cotton etchonge


^Durified Drotein

(b)

Anion est change

Electrophoresis

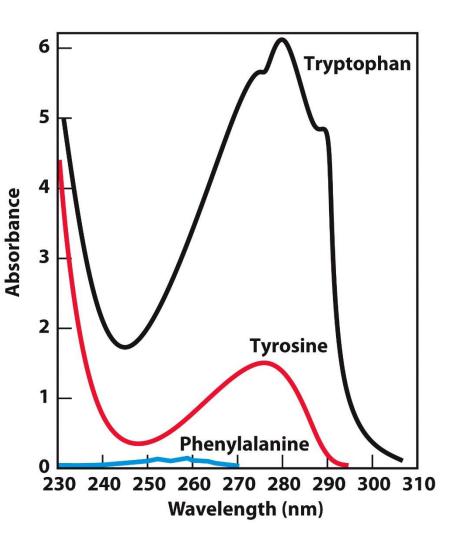
- Electric field pulls proteins by charge
- Gel matrix hinders • mobility
 - proteins sorted by size and shape

© 2013 W. H. Freeman and Company

SDS PAGE: Molecular Weight

- SDS sodium dodecyl sulfate a detergent $Na^{+-}O - \int_{O}^{O} -O - (CH_2)_{11}CH_3$ Sodium dodecyl sulfate (SDS)
- SDS micelles bind to and unfold all the proteins
 - SDS gives all proteins an uniformly negative charge
 - The native shape of proteins does not matter
 - Rate of movement will only depend on size: small proteins will move faster

Isoelectric Focusing: pl of a protein


A protein sample may be applied to one end of a gel strip with an immobilized pH gradient. Or, a protein sample in a solution of ampholytes may be used to rehydrate a dehydrated gel strip. An electric field is applied \bigcirc $(\div$ pH 9 — Decreasing pI \longrightarrow pH 3

After staining, proteins are shown to be distributed along pH gradient according to their pl values.

Spectroscopic Detection of Aromatic Amino Acids

- Aromatic amino acids absorb light in the UV region
- Proteins UV absorbance max 275– 280 nm
- W and Y = strongest chromophores
- Beers law: $A = \varepsilon \cdot c \cdot l$

Protein Sequencing

- Protein sequence essential for many biochemical investigations
- sequence typically determined by DNA sequence
- Edman Degradation (historical method)
 - Successive rounds of N-terminal modification, cleavage, and identification
 - Can be used to identify protein with known sequence
- Mass Spectrometry (Modern method)
 - MALDI MS and ESI MS can precisely identify the mass of a peptide, and thus the amino acid sequence
 - Can be used to determine post-translational modifications