The Ramachandran Plot:

Sterically-allowed ϕ and ψ

Ramachandran Reversed

Ramachandran Plot

- Non-repeating backbone patterns:
 - Too much strain: $H_i \rightarrow O_i$ and $H_i \rightarrow O_{i\pm 1}$ hydrogen bonds
 - Rare, but possible: $H_i \rightarrow O_{i-2}$ (Gamma turns)
 - Frequently observed: $H_i \rightarrow O_{i-3}$ (Beta turns)

Beta Turns Reverse the Direction of the Backbone

- The Alpha Helix Can be Repeated
 - $-H_i \rightarrow O_{i-4}$ (Gamma turns)
 - Average φ is = -60° , Average ψ is -40°

A (Right-Handed) Alpha Helix

- Download helix.pdb from the course website for a model you can examine in PyMOL
- Notice that helix ends have unsatisfied H-bonds

- Beta sheets are made of beta strands
 - No specified hydrogen bonding formula
 - Sheets can form between distant sets of residues
 - Shown: Parallel beta sheet

- Beta sheets are made of beta strands
 - No specified hydrogen bonding formula
 - Average ϕ is = -120°, Average ψ is 120° (with large variation)
 - Sheets can form between distant sets of residues
 - Shown: Antiparallel beta sheet

Ramachandran Revisited

Nucleic Acid Structure

Nucleic Acid Bases

(You must memorize these.)

Nucleic Acids Are Also Polymers

DNA & RNA Polymerase: Build up DNA and RNA from nucleoside triphosphates (5' \rightarrow 3' synthesis)

Convention: RNA/DNA typically is read from 5' to 3' direction (e.g. 5'-ATTGCAAC-3')

And yes, you must have the backbone structure of DNA memorized, too. (The level of detail in this slide is fine.)

Watson-Crick Base Pairing in an (Antiparallel) Double Helix

Diversity of Nucleic Acid Structure

Ribozyme: An RNA capable of catalyzing a chemical reaction

The ribosome contains a significant amount of RNA as well as proteins

Macromolecules can perform incredibly diverse structures! (And we haven't even mentioned lipids and sugars.)