Complications to Enzyme Kinetics

 Many models, with different parameters, can result in the same functional form as Michaelis-Menten

Can only detect slowest step

 Forward and reverse reactions can help, but intermediates may complicate interpretation

Example: Model Degeneracy

Consider this scheme:

$$E + S \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \underset{P}{\overset{k_2}{\Rightarrow}} EP \underset{P}{\overset{k_3}{\Rightarrow}} P + E$$

Solution (when ES, EP at steady-state):

$$v = \frac{v'_{max}[S_0]}{[S_0] + K'_M}$$
 where $v'_{max} = \frac{k_2 k_3 [E_0]}{k_2 + k_3}$ and $K'_M = \frac{k_3 (k_{-1} + k_2)}{k_1 (k_2 + k_3)}$

- You can't tell the difference at steady state!
 - Relaxation methods, non-reactive transition state analogs can help you pin down rates

What does K_M mean?

- How "tightly" does E bind to S?
- Lower K_M values will reach v_{max} sooner
- Often tuned to physiologically-relevant concentration
- When $k_{cat} \ll k_{-1}$ then $K_M = \frac{k_{cat} + k_{-1}}{k_1} \approx \frac{k_{-1}}{k_1} = K_d$

What does k_{cat} mean?

- How efficient is the enzyme once a complex is formed?
- Higher k_{cat} will have a faster velocity

Enzyme Specificity

• One enzyme, two substrates: the "free" enzyme matters ([E] vs. $[E_0]$)

$$v_0 = \left(\frac{k_{cat}}{K_M}\right)[E][S]$$

Ratio of velocities determines which substrate "wins"

$$\frac{v_A}{v_B} = \frac{(k_{cat}/K_M)_A[A]}{(k_{cat}/K_M)_B[B]}$$

• If [A] and [B] are equal, k_{cat}/K_M is all that matters

k_{cat}/K_M : The Specificity Constant

Enzyme	Substrate	$K_{M}(M)$	$k_{\rm cat}~({ m s}^{-1})$	$k_{\text{cat}}/K_M (M^{-1} \cdot \text{s}^{-1})$
Acetylcholinesterase	Acetylcholine	9.5×10^{-5}	1.4×10^{4}	1.5×10^{8}
Carbonic anhydrase	CO_2	1.2×10^{-2}	1.0×10^{6}	8.3×10^{7}
	HCO ₃	2.6×10^{-2}	4.0×10^{5}	1.5×10^{7}
Catalase	H_2O_2	2.5×10^{-2}	1.0×10^{7}	4.0×10^{8}
Chymotrypsin	N-Acetylglycine ethyl ester	4.4×10^{-1}	5.1×10^{-2}	1.2×10^{-1}
	N-Acetylvaline ethyl ester	8.8×10^{-2}	1.7×10^{-1}	1.9
	N-Acetyltyrosine ethyl ester	6.6×10^{-4}	1.9×10^{2}	2.9×10^{5}
Fumarase	Fumarate	5.0×10^{-6}	8.0×10^{2}	1.6×10^{8}
	Malate	2.5×10^{-5}	9.0×10^{2}	3.6×10^{7}
Superoxide dismutase	Superoxide ion $(O_2^{-\frac{1}{2}})$	3.6×10^{-4}	1.0×10^{6}	2.8×10^{9}
Urease	Urea	2.5×10^{-2}	1.0×10^{4}	4.0×10^{5}

- Higher values are more "specific"
- Diffusion limited $k_{cat}/K_{M} \approx 10^{7} 10^{8} \, \mathrm{M}^{-1} \, \mathrm{s}^{-1}$

What does specificity mean?

- Enzyme may be fast or slow
- Determines the "squareness" of the curve
- More specific enzymes will steeply reach v_{max} without "trailing-off"

Enzyme Inhibition

- Substrate competition: One substrate can overwhelm another based on k_{cat}/K_M
- Competitive inhibition: Inhibitor binds to enzyme, blocking access to substrate
- Noncompetitive inhibition: Inhibitor binds to enzyme regardless of whether substrate is bound
- Allosteric regulation: Enzyme can be activated or inhibited by modulating substrate binding

Competitive Inhibition

• Scheme:

$$E + S \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \underset{K_I}{\overset{k_{cat}}{\longrightarrow}} P + E$$

$$EI \underset{E}{\overset{K_I}{\rightleftharpoons}} E + I$$

Result:

$$v = \frac{v_{max}[S_0]}{[S_0] + K'_M}$$
 where $K'_M = K_M \left(1 + \frac{[I]}{K_I}\right)$

Competitive Inhibition: Derivation

We need an expression for [ES], since:

$$\frac{d[P]}{dt} = k_{cat}[ES]$$

We have an expression for [ES] at steady state:

$$\frac{d[ES]}{dt} = 0 = k_1[E][S] - (k_{-1} + k_{cat})[ES]$$

• But [E] can't exist in our final solution, only $[E_0]$. Use conservation of mass:

$$[E_0] = [E] + [ES] + [EI]$$

• Use K_I to eliminate [EI] from above expression; final expression for [ES] will only contain $[E_0]$, [S], and constants

Competitive Inhibition

• With competitive inhibitor, the K_M (not the v_{max} !) can be adjusted

 Adding enough [S] will always overcome inhibitor

Remember: These curves are each created from <u>several</u> experiments!

Tinoco, p. 392.

Non-competitive Inhibition

• Scheme:

$$E + S \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \xrightarrow{k_{cat}} P + E$$

$$EI \underset{E}{\overset{K_I}{\rightleftharpoons}} E + I \text{ and } ESI \underset{\rightleftharpoons}{\overset{K_I}{\rightleftharpoons}} ES + I$$

- Binding of inhibitor and substrate are independent
 - But ESI cannot form product

Non-competitive Inhibition

• With non-competitive inhibitor, the v_{max} is affected, but the enzyme can still bind with the same K_M

• Adding more [S] will not overcome inhibitor (no way to recover original v_{max})

Tinoco, p. 393.

Allostery and Enzymes

- Allostery: Binding at one site affects the binding at another site
 - It can become more or less favorable
- Allosteric effectors always bind at another site, but they can be competitive or noncompetitive
- Allostery involves <u>conformational change</u>

Allostery Example

- Non-Michaelis-Menten behavior of the rate curve
 - This should remind you of cooperativity!

Enzyme Kinetics and Binding

• If k_{cat} is slow compared to k_{-1} , then K_M is a true dissociation constant, and

$$\frac{v_0}{v_{max}} = \frac{[S]}{K_M + [S]}$$
 This should look eerily familiar!

 If binding is cooperative, we could expect to see more complicated expressions

Monod-Wyman-Changeux

 MWC Model: Alternative to our simple model for allostery (which used τ)

Monod-Wyman-Changeux

• Result:

$$\frac{v_0}{v_{max}} = \frac{\alpha(1+\alpha)}{(1+\alpha)^2 + L}$$

- L is equilibrium between T and R ($[T_0]/[R_0]$)
- α defined as $\alpha = [S]/K_R$
 - similar to S = K[L] in our previous discussion of binding

Cooperativity comes from equilibrium between R and T; substrate can shift that equilibrium