Complications to Enzyme Kinetics Many models, with different parameters, can result in the same functional form as Michaelis-Menten Can only detect slowest step Forward and reverse reactions can help, but intermediates may complicate interpretation ## Example: Model Degeneracy Consider this scheme: $$E + S \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \underset{P}{\overset{k_2}{\Rightarrow}} EP \underset{P}{\overset{k_3}{\Rightarrow}} P + E$$ Solution (when ES, EP at steady-state): $$v = \frac{v'_{max}[S_0]}{[S_0] + K'_M}$$ where $v'_{max} = \frac{k_2 k_3 [E_0]}{k_2 + k_3}$ and $K'_M = \frac{k_3 (k_{-1} + k_2)}{k_1 (k_2 + k_3)}$ - You can't tell the difference at steady state! - Relaxation methods, non-reactive transition state analogs can help you pin down rates ## What does K_M mean? - How "tightly" does E bind to S? - Lower K_M values will reach v_{max} sooner - Often tuned to physiologically-relevant concentration - When $k_{cat} \ll k_{-1}$ then $K_M = \frac{k_{cat} + k_{-1}}{k_1} \approx \frac{k_{-1}}{k_1} = K_d$ ## What does k_{cat} mean? - How efficient is the enzyme once a complex is formed? - Higher k_{cat} will have a faster velocity #### **Enzyme Specificity** • One enzyme, two substrates: the "free" enzyme matters ([E] vs. $[E_0]$) $$v_0 = \left(\frac{k_{cat}}{K_M}\right)[E][S]$$ Ratio of velocities determines which substrate "wins" $$\frac{v_A}{v_B} = \frac{(k_{cat}/K_M)_A[A]}{(k_{cat}/K_M)_B[B]}$$ • If [A] and [B] are equal, k_{cat}/K_M is all that matters # k_{cat}/K_M : The Specificity Constant | Enzyme | Substrate | $K_{M}(M)$ | $k_{\rm cat}~({ m s}^{-1})$ | $k_{\text{cat}}/K_M (M^{-1} \cdot \text{s}^{-1})$ | |----------------------|---------------------------------------|----------------------|-----------------------------|---| | Acetylcholinesterase | Acetylcholine | 9.5×10^{-5} | 1.4×10^{4} | 1.5×10^{8} | | Carbonic anhydrase | CO_2 | 1.2×10^{-2} | 1.0×10^{6} | 8.3×10^{7} | | | HCO ₃ | 2.6×10^{-2} | 4.0×10^{5} | 1.5×10^{7} | | Catalase | H_2O_2 | 2.5×10^{-2} | 1.0×10^{7} | 4.0×10^{8} | | Chymotrypsin | N-Acetylglycine ethyl ester | 4.4×10^{-1} | 5.1×10^{-2} | 1.2×10^{-1} | | | N-Acetylvaline ethyl ester | 8.8×10^{-2} | 1.7×10^{-1} | 1.9 | | | N-Acetyltyrosine ethyl ester | 6.6×10^{-4} | 1.9×10^{2} | 2.9×10^{5} | | Fumarase | Fumarate | 5.0×10^{-6} | 8.0×10^{2} | 1.6×10^{8} | | | Malate | 2.5×10^{-5} | 9.0×10^{2} | 3.6×10^{7} | | Superoxide dismutase | Superoxide ion $(O_2^{-\frac{1}{2}})$ | 3.6×10^{-4} | 1.0×10^{6} | 2.8×10^{9} | | Urease | Urea | 2.5×10^{-2} | 1.0×10^{4} | 4.0×10^{5} | - Higher values are more "specific" - Diffusion limited $k_{cat}/K_{M} \approx 10^{7} 10^{8} \, \mathrm{M}^{-1} \, \mathrm{s}^{-1}$ ## What does specificity mean? - Enzyme may be fast or slow - Determines the "squareness" of the curve - More specific enzymes will steeply reach v_{max} without "trailing-off" #### **Enzyme Inhibition** - Substrate competition: One substrate can overwhelm another based on k_{cat}/K_M - Competitive inhibition: Inhibitor binds to enzyme, blocking access to substrate - Noncompetitive inhibition: Inhibitor binds to enzyme regardless of whether substrate is bound - Allosteric regulation: Enzyme can be activated or inhibited by modulating substrate binding ## Competitive Inhibition • Scheme: $$E + S \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \underset{K_I}{\overset{k_{cat}}{\longrightarrow}} P + E$$ $$EI \underset{E}{\overset{K_I}{\rightleftharpoons}} E + I$$ Result: $$v = \frac{v_{max}[S_0]}{[S_0] + K'_M}$$ where $K'_M = K_M \left(1 + \frac{[I]}{K_I}\right)$ #### Competitive Inhibition: Derivation We need an expression for [ES], since: $$\frac{d[P]}{dt} = k_{cat}[ES]$$ We have an expression for [ES] at steady state: $$\frac{d[ES]}{dt} = 0 = k_1[E][S] - (k_{-1} + k_{cat})[ES]$$ • But [E] can't exist in our final solution, only $[E_0]$. Use conservation of mass: $$[E_0] = [E] + [ES] + [EI]$$ • Use K_I to eliminate [EI] from above expression; final expression for [ES] will only contain $[E_0]$, [S], and constants ## Competitive Inhibition • With competitive inhibitor, the K_M (not the v_{max} !) can be adjusted Adding enough [S] will always overcome inhibitor **Remember:** These curves are each created from <u>several</u> experiments! Tinoco, p. 392. #### Non-competitive Inhibition • Scheme: $$E + S \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \xrightarrow{k_{cat}} P + E$$ $$EI \underset{E}{\overset{K_I}{\rightleftharpoons}} E + I \text{ and } ESI \underset{\rightleftharpoons}{\overset{K_I}{\rightleftharpoons}} ES + I$$ - Binding of inhibitor and substrate are independent - But ESI cannot form product ## Non-competitive Inhibition • With non-competitive inhibitor, the v_{max} is affected, but the enzyme can still bind with the same K_M • Adding more [S] will not overcome inhibitor (no way to recover original v_{max}) Tinoco, p. 393. #### Allostery and Enzymes - Allostery: Binding at one site affects the binding at another site - It can become more or less favorable - Allosteric effectors always bind at another site, but they can be competitive or noncompetitive - Allostery involves <u>conformational change</u> ## Allostery Example - Non-Michaelis-Menten behavior of the rate curve - This should remind you of cooperativity! ## **Enzyme Kinetics and Binding** • If k_{cat} is slow compared to k_{-1} , then K_M is a true dissociation constant, and $$\frac{v_0}{v_{max}} = \frac{[S]}{K_M + [S]}$$ This should look eerily familiar! If binding is cooperative, we could expect to see more complicated expressions ## Monod-Wyman-Changeux MWC Model: Alternative to our simple model for allostery (which used τ) ## Monod-Wyman-Changeux • Result: $$\frac{v_0}{v_{max}} = \frac{\alpha(1+\alpha)}{(1+\alpha)^2 + L}$$ - L is equilibrium between T and R ($[T_0]/[R_0]$) - α defined as $\alpha = [S]/K_R$ - similar to S = K[L] in our previous discussion of binding Cooperativity comes from equilibrium between R and T; substrate can shift that equilibrium