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Virtually all fluorescence data required for any research 
project will fall into one of the following categories.  

1. The fluorescence emission spectrum

2. The excitation spectrum of the fluorescence

3. The quantum yield

4. The polarization (anisotropy) of the emission

5. The fluorescence lifetime

In these lectures, we examine each of these categories and 
briefly discuss historical developments, underlying concepts 
and practical considerations



Fluorescence Lifetime t

Fluorescence
10-9s

Absorption
10-15s

vibrational
relaxation 10-12s Note that the absorption process and 

vibrational relaxation (and internal conversion) 
processes happen on a much faster timescale 
than the fluorescence emission (S1 → S0 ). 
Thus the time it takes to return to the ground 
state S0 only depends on the time spend in 
the lowest vibrational state of S1. We call this 
the fluorescence lifetime t of the molecule. 

Fluorescence Lifetime:
Measure the average time 
it takes for a molecule 
after absorption to return 
to its ground state

Remember that a lifetime is also 
related to a rate coefficient: 

1
τ

Γ =



Fluorescence Lifetime t
Although we often speak of the properties of fluorophores as if they are studied in 
isolation, such is not usually the case. 
Absorption and emission processes are almost always studied on populations of molecules 
and the average properties of a molecule of the population are deduced from the 
macroscopic properties of the process.

laser beam

• n  is the number of molecules in the ground state (  ) at time t.
• n* is the number of excited molecules (  ) at time t.
• Γ is the rate constant of emission. The dimensions of Γ are sec-1 (transitions per molecule 

per unit time).  
• f(t) is an arbitrary function of the time, describing the time course of the excitation . 

In order to describe the behavior of the excited state population we define 
the following:

Illustration:
A laser beam passes through a solution containing 

fluorophores. At any given time some fluorophores will 
be excited, while the rest will be in its ground state. 

*
*  d n   =  -   Γ + n f ( t )nd t

The excited state population of fluorophores is described by a rate equation:

where n + n* = no (no describes the total number 
of molecules and is a constant) 



Steady-state Illumination
The excitation intensity in a steady-state 
experiment is constant. In other words the 
function f(t) is constant. f(

t)
   

  

time

Excitation intensity

The solution of the rate equation for a 
constant f(t) is given by a constant excited 
state population: 

* o ex

ex

n I =   n Γ+I
where f(t) = Iex describes 
the excitation intensity. 

Note that the fluorescence intensity is directly 
proportional to the excited state population:    IF ∝ n*
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The excited state population is initially directly proportional to the excitation intensity Iex (linear 
regime), but saturates at higher excitation intensities (because one cannot drive more molecules in the 
excited state than are available).

Comment: We will always work under conditions where we are far from 
saturation. In other words we are in the linear regime, where n* ∝ Iex.



Pulsed Excitation

Let’s consider a very short pulse (much 
shorter than the lifetime of the 
fluorophore, say less than 10-12 s in 
duration) is applied to the sample at t = 0. 

f(
t)

time

Excitation profile

0

The solution of the rate equation is given 
by an exponential decay of the excited 
state population: 
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If a population of fluorophores are 
excited, the lifetime is the time it 
takes for the number of excited 
molecules to decay to 1/e  or 36.8% of 
the original population according to: The lifetime τ is 

equal to Γ-1

τ
*

-t/
*

n (t) = e
n (0)



In pictorial form:

time

intensity

1.00 --

1/e

Exciting pulse

Fluorescence

τ

*
-t/τ

*
n (t) = e
n (0)

Note, the excited state population n*(t) is proportional to the 
fluorescence intensity IF(t).



Strickler-Berg equation
Knowledge of a fluorophore’s excited state lifetime is crucial for quantitative interpretation 
of numerous fluorescence measurements such as quenching, polarization and FRET. 

In most cases of interest, it is virtually impossible to predict a priori the excited state lifetime of a 
fluorescent molecule.  The true molecular lifetime, i.e., the lifetime one expects in the absence 
of any excited state deactivation processes – can be approximated by the Strickler-Berg 
equation (1962, J. Chem. Phys. 37:814).
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τr is the natural radiative lifetime, n is the refractive index of the solvent, ∆νe and ∆νa correspond to 
the experimental limits of the absorption and emission bands (S0 - S1 transitions), ε is the extinction 
coefficient, ν is the wavenumber and F(ν) describes the spectral distribution of the emission in 
photons per wavelength interval.

How well do these equations actually work?
Not very well – usually off by factors of 2 – 5 fold.



Natural Radiative Lifetime 

radiative
decay

Absorption

radiative
decay

Absorption
nonradiative
decay

(A) (B)

only radiative
decay possible

radiative decay competes 
with nonradiative decay

Experimentally measured rate coefficient: 

r Γ =k +r nr Γ =k k
Quantum yield: 

Φ =1 r

r nr

kΦ =
k +k



Analogy: Empty a full room of (excited-state) people

Radiative (fluorescence) 
door is open

You (your 
experiment) 
watches the 
fluorescent door

Non-Radiative
door is closed

Radiative (fluorescence) 
door is open

You (your 
experiment) 
watches the 
fluorescent door

Non-Radiative
door is open

Experimentally we can only observe the radiative (fluorescent) decay. Non-
radiative processes are alternative paths for the molecule to return to its 
ground state. These additional paths lead to a faster decay (emptying of the 
room) of the excited state population. Thus we observe a faster decay of the 
fluorescence intensity. 



The lifetime and quantum yield for a given fluorophore is often dramatically 
affected by its environment.

Examples of this fact would be NADH, which in water has a lifetime of ~0.4 ns 
but bound to dehydrogenases can be a long as 9 ns.  

The lifetime of 
tryptophan in proteins 
ranges from ~0.1 ns 
up to ~8 ns

Ethidium bromide is 1.8 ns 
in water, 22 ns bound to 
DNA and 27ns bound to 
tRNA 

ANS in water is ~100 
picoseconds but can 
be 8 – 10 ns bound to 
proteins



radiative
decay

Absorption
radiative
decay

Absorption

ANS in protein

The rate coefficient kr for radiative decay is 
approximately the same in both cases.  However, the 
rate of non-radiatve decay depends often strongly on 
the environment. In water (polar solvent) the non-
radiatve decay dominates (knr,H20 >> kr), while in the 
apolar protein environment the non-radiatve decay 
rate decreases (knr,H20 >> knr,protein). 

r nr,protein Γ =k +k

r

r nr,H2O

kΦ =
k +k

ANS in water

nonradiative
decay

nonradiative
decay

r nr,H2O Γ =k +k

r

r nr,protein

kΦ =
k +k

<<

>>

Qualitative 
Explanation:

ANS in water is ~100 ps
but can be 8 – 10 ns 
bound to proteins

Experimentally measured 
rate coefficient: 

Quantum yield: 



Fluoresence Lifetime Measurement 

Excited state lifetimes have traditionally been measured using either the 
impulse response or the harmonic response method.  In principle both methods 
have the same information content.  These methods are also referred to as 
either the “time domain” method or the “frequency domain” method.

In the impulse (or pulse) method, the sample is 
illuminated with a short pulse of light and the intensity of 
the emission versus time is recorded.  Originally these 
short light pulses were generated using flashlamps which 
had widths on the order of several nanoseconds.  Modern 
laser sources can now routinely generate pulses with 
widths on the order of picoseconds or shorter.

f(
t)

time

Pulsed excitation

0

f(
t)

time

harmonic excitation

0

In the harmonic method (also known as the phase and 
modulation or frequency domain method) a continuous 
light source is utilized, such as a laser or xenon arc, 
and the intensity of this light source is modulated 
sinusoidally at high frequency.  

We briefly discuss the impulse method …



Time-Domain Lifetime Measurement 

time

intensity

1.00 --

1/e

Exciting pulse

Fluorescence

τ

As shown in the intensity decay figure, the fluorescence lifetime t is the time at 
which the intensity has decayed to 1/e of the original value. The decay of the 
intensity with time is given by the relation:

Where It is the intensity at time t, α is a normalization term (the pre-
exponential factor) and τ is the lifetime. 

α -t/τ
tI = e



It is more common to plot the fluorescence decay data using a logarithmic 
scale as shown here.

time

Log intensity

Exciting pulse

Emission

α -t/τ
tI = e

α τtlogI =log -t/

Note, an exponential decay leads to a straight line in the logarithmic plot



If the decay is multiexponential, the relation between the 
intensity and time after excitation is given by: 

( ) ∑ i
t- τ

i
i

I t = αe

One may then observe data such as those sketched below:

time

Log intensity

Exciting pulse

Emission

∼ τ1

∼ τ2

Here we can discern at least 
two lifetime components 
indicated as t1 and t2. This 
presentation is 
oversimplified but illustrates 
the point.

Note the logarithmic plot shows a curved decay (thus there has to be more 
than one lifetime present)



Here are pulse decay data on anthracene in cyclohexane taken on an IBH 
5000U Time-correlated single photon counting instrument equipped with an 
LED short pulse diode excitation source.

τ = 4.1ns
chi2 = 1.023

56ps/ch



Polarization Part II:  Rotational Depolarization 

So far we assumed that the molecule is not rotating during the lifetime 
of the excited state (for example if the fluorophores are embedded in 
a highly viscous or frozen medium).

This allowed us to determine the intrinsic polarization Po. 

the equation describing the intrinsic polarization (or anisotropy) is 
given by:

o
1+3cos(2β)P =
7 +cos(2β)

 
 
 

2

o
2 3cos β -1r =
5 2

where β is the angle between absorption and emission dipoles.

Example



We may now consider the case where the fluorophore is permitted to 
rotate during the excited state lifetime.

Absorption dipole

Emission dipole
t = 0

β

ωEmission dipole
t > 0



Ground state population



S0-S1

Photoselection



Photoselection



0⊥

⊥

⇒ >o
I -I

P =
I +I⊥ ≈

I = I
I 0

Average direction

III

I⊥

t > 0

Excited state population just after absorption (t = 0)



⊥ ≈I I 0⊥

⊥

⇒ ≈
I -I

P(t > 0) =
I +I

III

I⊥

No preferred direction

Excited state population some time after absorption (t > 0)



Absorption dipole

Emission dipole
t = 0

Emission dipole
t > 0

β

ω

Thus, the polarization 
value is time dependent !!!

Consider a single 
fluorophore:

Immediately after excitation the 
polarization is given by the 
intrinsic polarization P0 :

o
1+3cos(2β)P =
7 +cos(2β)

 
 
 

2

o
2 3cos β -1r =
5 2

The fluorophore rotates on 
average through an angle ω during 
its fluorescence lifetime t. This leads 
to additional depolarization:









−







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P
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3
1

P
1

2
o

 
 
 

2

o
3cos ω -1r = r

2

So the total polarization is determined by an intrinsic factor (Po or ro) 
and an extrinsic factor ω.



Perrin Equation 
F. Perrin related the observed polarization to the excited state lifetime and 
the rotational diffusion of a fluorophore:  Perrin, F. 1926. Polarisation de la 
Lumiere de Fluorescence.  Vie Moyene des Molecules Fluorescentes. J. 
Physique. 7:390-401.

τ  
  

  o

1 1 1 1 3or     - = - 1 +
P 3 P 3 ρ

τ 
 
 

or 3= 1 +
r ρ

Specifically:

where ρ is the Debye rotational relaxation time which is the time for a 
given orientation to rotate through an angle of 68.42o (= arccos(e-1) ).  

ηρ 3 V=
RT

For a spherical molecule:

where V is the molar volume of the rotating unit, R is the universal gas 
constant, T the absolute temperature, η the viscosity and τ the excited 
state lifetime.  



( )η3 M υ + h
ρ =

RT
For a spherical protein,
it follows that:

Where M is the molecular weight, ν is the partial specific volume and h 
the degree of hydration.

If the molecule is not spherical then the relevant term is the harmonic 
mean of the rotational relaxation times (ρh ) about the principle 
rotational axes

 
 
 

-1 -1 -1
-1 1 2 3

h
ρ + ρ + ρρ =

3



*  Rotational relaxation time versus rotational correlation time.

We should note that it is not uncommon to see the term “rotational 
correlation time”, often denoted as τc, used in place of the Debye rotational 
relaxation time.  The information content of these terms is similar since
ρ = 3τc but we have observed that some people become rather fervently 
attached to the use of one term or the other.  

In the original development of the theories of rotational motion of 
fluorophores Perrin and others used the rotational relaxation time, as 
originally defined by Debye in his studies on dielectric phenomena.  Only 
later (in the 1950’s) during the development of nuclear magnetic resonance 
was the term rotational correlation time used by Bloch.  It thus seems 
reasonable for fluorescence practitioners to use ρ but certainly adoption of 
either term should not lead to confusion.  In terms of anisotropy and 
rotational correlation times, then, the Perrin equation would be:

c

τ
τ

 
 
 

or = 1+
r



Perrin-Weber Plot 
A plot of 1/P - 1/3 (or r) versus T/η predicts a straight line, the intercept and 
slope of which permit determination of Po and the molar volume (if the 
lifetime is known).   Shown below is such a plot (termed a Perrin-Weber 
plot) for protoporphyrin IX associated with apohorseradish peroxidase - the 
viscosity of the solvent is varied by addition of sucrose.

τ  
  

  o

1 1 1 1 3- = - 1 +
P 3 P 3 ρ

P = 0.225

P = 0.151

( )η3 M υ + h
ρ =

RT



The polarization observed in buffer alone was 
0.151 while the limiting polarization obtained 
from the intercept on the Y-axis was 0.225, 
which is the same value one obtains for upon 
excitation of protoporphyrin IX in glycerol at 
low temperatures.   From the Perrin equation:

and knowing the lifetime of 16.9 ns, one can calculate a rotational relaxation time of 96 ns for 
the protein-porphyrin complex:  


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



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ns9.16x31
3
1

225.0
1

3
1

151.0
1 ρ =  96 ns

( )
RT

hM +
=

υηρ 3For a spherical protein of 44,000 daltons and assuming a partial specific 
volume of 0.74 and 0.3 ml/mg for the hydration, one can then calculate:

ρ = (3)(0.01)(44000)(0.74+0.3)/(8.31x107)(293) = ~56 ns

Thus it appears as if this protein is non-spherical



In the case of fluorescence probes associated non-
covalently with proteins, (for example porphryins, 
FAD, NADH or ANS to give but a few systems), the 
probe is held to the protein matrix by several points 
of attachment and hence its “local” mobility, that is, 
its ability to rotate independent of the overall “global” 
motion of the protein, is very restricted.  

In the case of a probe attached covalently to a protein, 
via a linkage through an amine or sulfhydryl groups for 
example, or in the case of tryptophan or tyrosine 
sidechains, considerable “local” motion of the 
fluorophore can occur.  In addition, the protein may 
consist of flexible domains which can rotate 
independent of the overall “global” protein rotation.  
This type of mobility hierarchy is illustrated on the right 
for the case of a probe covalently attached to the 
dimeric protein L7/L12

(a)

NN

CC

dye
(c)

(b)

Rotational Modalities

Local Motion 

(a)  overall L7/L12 rotation
(b)  movement of one C-domain 
relative to other domains
(c)  movement of dye molecule 
around its point of attachment



In such a system one would see a downward curvature in the Perrin-Weber 
plots as illustrated below:

1/P – 1/3

T/η

1/Po – 1/3

A detailed analysis of the rotational modalities in such a system requires 
time-resolved measurements, which is beyond the scope of this workshop.



Polarization and Protein Aggregation 
Polarization methods are ideally suited to study the aggregation state of a protein.  
Consider, for example the case of a protein dimer - monomer equilibrium:

F F

Following either intrinsic protein fluorescence (if possible) or by labeling the protein 
with a suitable probe one would expect the polarization of the system to decrease 
upon dissociation of the dimer into monomers since the smaller monomers will rotate 
more rapidly than the dimers (during the excited state lifetime).  

F

FF
F

F F

Lower P Higher P

Hence for a given probe lifetime the polarization (or anisotropy) of 
the monomer will be less than that of the dimer



Polarization of a Mixture of Species 
In the concentration range near the dimer/monomer equilibrium constant, one 
expects to observe a polarization intermediate between that associated with either 
dimer or monomer.  One can relate the observed polarization to the fraction of 
dimer or monomer using the additivity of polarizations first described by Weber 
(1952) namely:

   
       

∑
-1 -1

i
i

1 1 1 1- = f -
P 3 P 3 ∑ i ior       r = fr

Polarization and Anisotropy of a mixture:

where <P> ( <r> ) is the observed polarization (observed anisotropy) of the 
mixture, fi is the fractional intensity contributed by the i-th component and Pi
( ri ) is the polarization (anisotropy) of the i-th component.  One must then 
relate the fractional intensity contributions to molar quantities which means 
that one must take into account any change in the quantum yield of the 
fluorophore associated with either species.

Note that the anisotropy function is directly additive



So to determine the dissociation constant, one can dilute the protein 
and observe the polarization (or anisotropy) as a function of protein 
concentration as shown below.

FITC-lysozyme
(monomer)

L7/L12 
(dimer)



A typical plot of polarization versus ligand/protein ratio is shown below:

In this experiment, 1 micromolar mant-GTPγS (a fluorescent, non-hydrolyzable
GTP analog) was present and the concentration of the GTP-binding protein, 
dynamin, was varied by starting at high concentrations followed by 
dilution. The binding curve was fit to the anisotropy equation (in this case the 
yield of the fluorophore increased about 2 fold upon binding). A Kd of 8.3 µM
was found



Another example of the utility of polarization/anisotropy data is shown here for the case 
of cyanine analogs of ADP binding to myosin subfragment.  The 3’-isomer shows 
increased intensity upon binding while the 2’-isomer does not.  But anisotropy data 
indicate binding of both isomers (from Oiwa et al 2003 Biophys. J. 84:634)

2’ 3’



FPIA – Fluorescence Polarization ImmunoAssay
Among the first commercial instruments designed to use a fluorescence 
polarization immunoassay for clinical diagnostic purposes was the Abbott 
TDx – introduced in 1981.

The basic principle of a polarization immunoassay is to:
(1) Add a fluorescent analog of a target molecule – e.g., a drug – to a 

solution containing antibody to the target molecule

(2) Measure the fluorescence polarization, which corresponds to the 
fluorophore bound to the antibody

(3) Add the appropriate biological fluid, e.g., blood, urine, etc., and measure 
the decrease in polarization as the target molecules in the sample 
fluid bind to the antibodies, displacing the fluoroescent analogs. 



Antibody High Polarization

Unlabeled antigen

+

Fluorophore-linked 
antigen

+Low Polarization



Time dependent spectral relaxations

Solvent dipolar orientation relaxation

10-15 s 10-9 s

Frank-Condon state Relaxed stateGround state

Immediately after excitation Long time after excitation

EquilibriumOut of EquilibriumEquilibrium



As the relaxation proceeds, the energy of the excited state decreases 
and the emission moves toward the red

Relaxed, out of equilibrium

Excited state 
Partially relaxed state

Energy is decreasing as
the system relaxes

Ground state



The emission spectrum moves toward the red with time

Intensity Wavelength

timeWavelength

Time resolved spectra



Time resolved spectra of TNS in a
Viscous solvent and in a protein


