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Fluorescence Microscopy

Use a microscope as 
a fluorometer

Advantages: 

• superb optics
• very high collection efficiency
• imaging
• allows single cell measurements
• single molecule experiments 



The microscope as a filter fluorometer
with focusing optics



Basic design of  a fluorescent microscope
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Anatomy of a Fluorescence Microscope



Widefield-fluorescence microscope image

Widefield fluorescence image of a 16 micron thick section of fluorescently-labeled mouse kidney. 
Copyright, J. Waters, 2004 



Principle of Confocal Microscopy
Pinhole only passes light that 
emanates from a thin section of 
the sample (indicated in red)

z

Note confocal microscopy only 
observes a point (a tiny 
subvolume to be more precise)



Laser Scanning Confocal Microscopy (LSCM):

Observed 
volume

Need to perform a raster scan to build up an image point by point

Two electronically driven scan 
mirrors move the laser spot on 
the sample in a raster-like 
fashion.   



Widefield Image                Confocal Image

The same specimen show on the left, 
taken with a confocal microscope. 

Widefield fluorescence image of a 16 micron 
thick section of fluorescently-labeled mouse 
kidney. 

Copyright, J. Waters, 2004 



Photobleaching

The average number of excitation and emission cycles that occur for a particular 
fluorophore before photobleaching is dependent upon the molecular structure and the local 
environment. Some fluorophores bleach quickly after emitting only a few photons, while 
others that are more robust can undergo thousands or millions of cycles before bleaching. 



Photobleaching

original image Photobleached image
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Two-Photon Microscopy: Principle

Now consider two-photon absorption

Energy Diagram:

Fluorescence
~10-9 s

Absorption
~10-15 s

S0

S1

Internal Conversion
~10-12 s

Radiation-
less Decay

<10-9 s

Two-photon absorption is an optical nonlinear process



Two-Photon Fluorescence 
Simultaneous absorption of two-photons is a rare process:

Maximize two-photon effect by increasing the photon flux
- spatially by focusing the light
- temporally (ultrafast laser pulses)

objective

One photon
beam

two photon
spot
(volume: 1 fl)

Inherent 3 - dimensional optical sectioning effect!



Two-photon spectroscopy
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Two-photon absorption is spectrally well separated from the fluorescence! 
Note that Raman of the solvent will not occur within the fluorescence 
emission spectrum.   



Two-photon Instrumentation
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Two-photon Imaging

Purkinje neurone in a living brain slice filled with fluorescein dextran imaged with two-photon 
excitation laser scanning microscopy  (Svoboda, Cold spring Harbor Laboratories) 

Two-photon image resolution is 
essentially the same as that of 
confocal microscopy. However, 
imaging in the presence of significant 
scatter (such as in thick tissue) 
requires two-photon excitation.

Also note that photobleaching in two-
photon microscopy is strictly 
restricted to the excitation volume!

Denk, Nature Methods 2, 932 - 940 (2005) 



Fluorescence Fluctuation Spectroscopy
Q:  How many fluorescent molecules are (on average) in the two-photon (or 
confocal) volume of the microscope?

A: That depends on the concentration. At a high concentration there are more 
molecules in the volume than at low concentrations. 

Q:  Ok, many proteins in cells have nanomolar concentrations. How many 
proteins ( assuming c = 1 nM ) are now in the volume?

A: Let me calculate … (Volume is 1 femtoliter, Avogadro’s number is 6x1023, c 
= 1 nM). The number I get is a single molecule per observation volume. Well 
that’s ok, fluorescence is very sensitive and can detect single molecules.

Q:  Proteins in a solution (and in a cell) are typically mobile. They diffuse 
around. What will happen if the single molecule moves around? Also a single 
molecule is in the volume on average. Is there a chance that sometimes 
there will be two or no molecules in the volume?

A: Yes, the number of molecules will fluctuate as they diffuse in and out of the 
observation volume. Because two molecules produce more fluorescence than a 
single molecule there will be fluctuations in the fluorescence intensity. 



Fluorescence Fluctuation Spectroscopy
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Statistical Analysis of the Fluctuations required
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Fluorescence Correlation 
Spectroscopy (FCS)
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Photon Counting Histogram (PCH)

Parameters: G(0)  &  kkinetics

PCH Parameters: <N>  &  ε
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Calculating the Autocorrelation Function

time

Average 
Fluorescence

F

Fluorescence 
Fluctuation

( ) ( )dF t F t F= −

F(t)
in 
photon 
counts

τ

t + τt

2

( ) ( )
( )

dF t dF t
G

F
τ

τ
⋅ +

=



The Autocorrelation Function
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The Effects of Particle Concentration on the
Autocorrelation Curve

<N> = 2
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What about the excitation (or observation) volume shape?



Correlation function of diffusing molecules  

For a 3-dimensional Gaussian excitation volume:
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1-photon equation 

contains a 4, 
instead of 8

N:     average number of particles inside volume
D:     Diffusion coefficient
wo:    radial beam waist of two-photon laser spot
zo:     axial beam waist of two-photon laser spot



The Effects of Particle Size on the
Autocorrelation Curve

300 um2/s
90  um2/s
71   um2/s

Diffusion Constants

Fast Diffusion

Slow Diffusion

0.25

0.20

0.15

0.10

0.05

0.00

G
(t)

10 -7 10 -6 10 -5 10 -4 10 -3

Time (s)

Stokes-Einstein Equation:

D =
k ⋅T

6 ⋅π ⋅ η ⋅ r
and

Monomer --> Dimer 
Only a change in D by a factor of 21/3, or 1.26

3rVolumeMW ∝∝



FCS inside living cells
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Correlation Analysis

Measure the diffusion coefficient of Green Fluorescent 
Protein (GFP) in aqueous solution in inside the nucleus of a cell.



Statistical Analysis: Brightness

Brightness ε is the average fluorescence 
intensity of a single particle 

Illustration:

time
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Brightness Encodes Stoichiometry 
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Photon Counting Histogram (PCH)
Aim: To resolve species from differences in their molecular brightness

Molecular brightness ε :  The average photon count rate of a single fluorophore

where p(k) is the probability of 
observing k photon counts

PCH:     probability distribution function p(k)

16000cpsm
N 0.3
ε =

=

Single Species:

p(k) = PCH(ε, N )

Note: PCH is Non-Poissonian!

Sources of Non-Poissonian Noise
• Detector Noise
• Diffusing Particles in an Inhomogeneous Excitation Beam*
• Particle Number Fluctuations*
• Multiple Species*



PCH in cells: Brightness of EGFP
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The molecular brightness of EGFP is a factor ten higher than that of the 
autofluorescence in HeLa cells

Excitation=895nm

Chen Y, Mueller JD, Ruan Q, Gratton E (2002) Biophysical Journal, 82, 133 . 



Brightness and Stoichiometry 
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Brightness of EGFP2 is twice the brightness of EGFP 
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Chen Y, Wei LN, Mueller JD, PNAS (2003) 100, 15492-15497 



The End


