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Fluorescence Microscopy

Use a microscope as

a fluorometer @%@E

Advantages:

» superb optics

- very high collection efficiency
* imaging

- allows single cell measurements
- single molecule experiments



The microscope as a filter fluorometer
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Basic design of a fluorescent microscope
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Filter Transmission
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Dichromatic Mirror Function in Reflected Light Fluorescence lllumination
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Anatomy of a Fluorescence Microscope
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Widefield-fluorescence microscope image

Widefield fluorescence image of a 16 micron thick section of fluorescently-labeled mouse kidney.
Copyright, J. Waters, 2004



Principle of Confocal Microscopy

Pinhole only passes light that
emanates from a thin section of
the sample (indicated in red)

photornuttiplier
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Note confocal microscopy only
observes a point (a tiny
subvolume to be more precise)
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Laser Scanning Confocal Microscopy (LSCM):

Widefield versus Confocal Point Scanning of Specimens
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Need to perform a raster scan to build up an image point by point

Two electronically driven scan
mirrors move the laser spot on
the sample in a raster-like
fashion.




Widefield Image Confocal Image

Widefield fluorescence image of a 16 micron The same specimen show on the left,
thick section of fluorescently-labeled mouse taken with a confocal microscope.
kidney.

Copyright, J. Waters, 2004



Photobleaching

Fluorescence Bleaching
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The average number of excitation and emission cycles that occur for a particular
fluorophore before photobleaching is dependent upon the molecular structure and the local
environment. Some fluorophores bleach quickly after emitting only a few photons, while
others that are more robust can undergo thousands or millions of cycles before bleaching.



Photobleaching
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Two-Photon Microscopy: Principle

Now consider two-photon absorption

Energy Diagram:
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Two-photon absorption is an optical nonlinear process



Two-Photon Fluorescence

Simultaneous absorption of two-photons is a rare process:

Maximize two-photon effect by increasing the photon flux
- spatially by focusing the light
- femporally (ultrafast laser pulses)

el two photon
One photon ;77 spot
beam (volume: 1 f1)

objective

Inherent 3 - dimensional optical sectioning effect!



Two-photon spectroscopy

-photon two-photon
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Two-photon absorption is spectrally well separated from the fluorescencel!
Note that Raman of the solvent will not occur within the fluorescence
emission spectrum.



Two-photon Instrumentation
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Two-photon Imaging

Two-photon image resolution is
essentially the same as that of
confocal microscopy. However,
imaging in the presence of significant
scatter (such as in thick tissue)
requires two-photon excitation.

Also note that photobleaching in two-
photon microscopy is strictly
K Swoboda restricted to the excitation volume!

Purkinje neurone in a living brain slice filled with fluorescein dextran imaged with two-photon
excitation laser scanning microscopy (Svoboda, Cold spring Harbor Laboratories)
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Denk, Nature Methods 2, 932 - 940 (2005)



Fluorescence Fluctuation Spectroscopy

Q: How many fluorescent molecules are (on average) in the two-photon (or
confocal) volume of the microscope?

A: That depends on the concentration. At a high concentration there are more
molecules in the volume than at low concentrations.

Q: Ok, many proteins in cells have nanomolar concentrations. How many
proteins ( assuming ¢ =1 nM ) are now in the volume?

A: Let me calculate ... (Volume is 1 femtoliter, Avogadro’s number is 6x1023, ¢
=1 nM). The number | get is a single molecule per observation volume. Well
that’s ok, fluorescence is very sensitive and can detect single molecules.

Q: Proteins in a solution (and in a cell) are typically mobile. They diffuse
around. What will happen if the single molecule moves around? Also a single
molecule is in the volume on average. Is there a chance that sometimes
there will be two or no molecules in the volume?

A: Yes, the number of molecules will fluctuate as they diffuse in and out of the
observation volume. Because two molecules produce more fluorescence than a
single molecule there will be fluctuations in the fluorescence intensity.



Fluorescence Fluctuation Spectroscopy

Fluorescence intensity:
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Number of Occurances

Statistical Analysis of the Fluctuations required

Photon counts

Counts

Photon Counting Histogram (PCH)
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Calculating the Autocorrelation Function

Fluorescence
Fluctuation

dF (1) = F (1)~ (F)
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The Autocorrelation Function
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The Effects of Particle Concentration on the
Autocorrelation Curve
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What about the excitation (or observation) volume shape?




Correlation function of diffusing molecules
For a 3-dimensional Gaussian excitation volume:

1 1 Z'
G(r)= 1+ 1+

1-photon equation
contains a 4,

instead of 8
N: average number of particles inside volume
D: Diffusion coefficient
w,: radial beam waist of two-photon laser spot
z,: axial beam waist of two-photon laser spot



The Effects of Particle Size on the
Autocorrelation Curve
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FCS inside living cells

Correlation Analysis
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Measure the diffusion coefficient of Green Fluorescent
Protein (GFP) in aqueous solution in inside the nucleus of a cell.



Statistical Analysis: Brightness

Brightness ¢ 1s the average fluorescence
intensity of a single particle

Illustration:
Sample Fluorescence Brightness
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Brightness Encodes Stoichiometry
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Photon Counting Histogram (PCH)

AiIm: To resolve species from differences in their molecular brightness

Molecular brightness £ : The average photon count rate of a single fluorophore

PCH: probability distribution function p(k) where p(k) is the probability of
observing k photon counts
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PCH in cells: Brightness of EGFP

Excitation=895nm

3
o
& 4
£ 3x10*
7
&)
@
= 4
2o 2%
§o)
m
S 1x10°-
£
O
o}
© 0
=

The molecular brightness of EGFP is a factor ten higher than that of the
autofluorescence in HelLa cells

Chen Y, Mueller JD, Ruan Q, Gratton E (2002) Biophysical Journal, 82, 133 .



Brightness and Stoichiometry
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Brightness of EGFP, is twice the brightness of EGFP

Chen Y, Wei LN, Mueller JD, PNAS (2003) 100, 15492-15497



The End



